Featured Research

from universities, journals, and other organizations

Warmer climate could increase release of carbon dioxide by inland lakes

Date:
July 23, 2010
Source:
Uppsala University
Summary:
Much organically bound carbon is deposited on inland lake bottoms. A portion remains in the sediment, sometimes for thousands of years, while the rest is largely broken down to carbon dioxide and methane, which are released into the atmosphere. Swedish researchers have shown that carbon retention by sediment is highly temperature-sensitive and that a warmer climate would result in increased carbon dioxide emissions to the atmosphere.

Carbon retention by lake sediment is highly temperature-sensitive and that a warmer climate would result in increased carbon dioxide emissions to the atmosphere, new Swedish research shows.
Credit: iStockphoto/Anna Yu

Much organically bound carbon is deposited on inland lake bottoms. A portion remains in the sediment, sometimes for thousands of years, while the rest is largely broken down to carbon dioxide and methane, which are released into the atmosphere. Swedish researchers have shown that carbon retention by sediment is highly temperature-sensitive and that a warmer climate would result in increased carbon dioxide emissions to the atmosphere.

Related Articles


The study is published in the current issue of the journal Nature.

Particles of different kinds -- including microscopic algae, other plankton and humus from surrounding land areas -- are continuously deposited on lake bottoms. The breakdown of a portion of this matter by bacteria in the sediment contributes significantly to atmospheric carbon dioxide. Lake sediment nevertheless constitutes an important "carbon sink," serving to store -- sometimes for a very long time -- a significant portion of the carbon-containing material that does not decompose.

To date, it has been unclear to what extent organic, carbon-containing material remains on lake bottoms, as opposed to being broken down. A group of researchers under the leadership of Professor Lars Tranvik at the Department of Limnology at Uppsala University has found a strong connection between the carbon dioxide production of lake sediment and bottom-water temperature.

"What we have discovered is that a very similar temperature-dependence relationship holds for a wide range of lake-sediment types," says doctoral student Cristian Gudasz, who was responsible for data collection and evaluation. "Temperature affects carbon-dioxide production in much the same way regardless of a lake's nutrient content and geographic location and the chemical composition of the sediment."

The discovery of a broadly robust temperature-dependence relationship set the stage for an investigation of the effect of temperature on lake sediment in the boreal forest zone that runs through Eurasia and North America and contains millions of lakes. The annual rate at which bound carbon is deposited as sediment in the lakes of the boreal zone will fall by 4-27 per cent, depending on which climate forecasts are borne out, over the next hundred years. The production of carbon dioxide by lake sediment will increase correspondingly, resulting in higher levels of emissions to the atmosphere.

It is becoming increasingly clear that inland water systems play an important role in the global carbon cycle, in spite of the fact that they only cover 3 percent of the land area of the Earth. The study under consideration demonstrates how the role of inland water systems can be expected to change in response to climate change.

The project was carried out in collaboration with researchers at Linkφping University within the scope of a major research undertaking focusing on the effects of environmental change on lake ecosystems and financed by Formas and the Swedish Research Council.


Story Source:

The above story is based on materials provided by Uppsala University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cristian Gudasz, David Bastviken, Kristin Steger, Katrin Premke, Sebastian Sobek & Lars J. Tranvik. Temperature-controlled organic carbon mineralization in lake sediments. Nature;, 2010; DOI: 10.1038/nature09186

Cite This Page:

Uppsala University. "Warmer climate could increase release of carbon dioxide by inland lakes." ScienceDaily. ScienceDaily, 23 July 2010. <www.sciencedaily.com/releases/2010/07/100721132625.htm>.
Uppsala University. (2010, July 23). Warmer climate could increase release of carbon dioxide by inland lakes. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/07/100721132625.htm
Uppsala University. "Warmer climate could increase release of carbon dioxide by inland lakes." ScienceDaily. www.sciencedaily.com/releases/2010/07/100721132625.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Deadly Japanese Pufferfish Discovered in Crimean Waters

Deadly Japanese Pufferfish Discovered in Crimean Waters

Reuters - Light News Video Online (Nov. 24, 2014) — The capture of deadly Japanese pufferfish in the waters of Crimea is causing concern for fishermen and scientists alike. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Buzz60 (Nov. 24, 2014) — An aquarium captures a first-of-its kind video of a notoriously camera-shy fish that’s also not so camera-friendly. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins