Featured Research

from universities, journals, and other organizations

Quantum phenomenon observed: Atoms form organized structure from unorganized one

Date:
July 29, 2010
Source:
University of Innsbruck
Summary:
Physicists have experimentally observed a quantum phenomenon, where an arbitrarily weak perturbation causes atoms to build an organized structure from an initially unorganized one.

Physicists can observe quantum mechanical phase transitions using ultracold atoms (yellow) in optical lattices (white surface). Originally, the existence of phase transitions was predicted for certain metals and they describe the transition from a conductor to an insulator. For weak interactions the particles are spread out over the lattice in a superfluid state (front); a deep lattice potential is necessary to confine them into single lattices (back).
Credit: Uni Innsbruck, Austria

In an international first, physicists of the University of Innsbruck, Austria have experimentally observed a quantum phenomenon, where an arbitrarily weak perturbation causes atoms to build an organized structure from an initially unorganized one. The scientific team headed by Hanns-Christoph Nägerl has published a paper about quantum phase transitions in a one dimensional quantum lattice in the scientific journal Nature.

Related Articles


With a Bose-Einstein condensate of cesium atoms, scientists at the Institute for Experimental Physics of the University of Innsbruck have created one dimensional structures in an optical lattice of laser light. In these quantum lattices or wires the single atoms are aligned next to each other with laser light preventing them from breaking ranks. Delete using an external magnetic field allows the physicists to tune the interaction between the atoms with high precision and this set-up provides an ideal laboratory system for the investigation of basic physical phenomena. "Interaction effects are much more dramatic in low-dimensional systems than in three dimensional space," explains Hanns-Christoph Nägerl. Thus, these structures are of high interest for physicists. It is difficult to study quantum wires in condensed matter, whereas ultracold quantum gases provide a versatile tunable laboratory system. And these favorable experimental conditions open up new avenues to investigate novel fundamental phenomena in solid-state or condensed matter physics such as quantum phase transitions.

Quantum phase transition

The Innsbruck physicists have observed a "pinning transition" from a superfluid ("Luttinger liquid") to an insulated phase ("Mott-insulator"). In their experiment they showed that for strongly interacting atoms an additional weak lattice potential was sufficient to pin the atoms to fixed positions along the wire ("pinning"). The atoms were cooled down to nearly absolute zero and were in their quantum mechanical ground state. "It is not thermal fluctuations that induce the phase transition," stresses PhD student Elmar Haller, who is also first author of the study, which has been published in the journal Nature. "In fact, the atoms are already correlated due to strong repulsive interaction and only need a small push to align regularly along the optical lattice," explains Haller. When the lattice is removed, the atoms return to a superfluid state.

Theoretical prediction

The phenomenon observed by the experimental physicists was proposed by three theorists two years ago, two of whom -- Wilhelm Zwerger and Hans Peter Büchler -- also worked at the University of Innsbruck. This research work is funded by the Austrian Science Fund (FWF), the European Science Foundation (ESF) and by European Union research programs.


Story Source:

The above story is based on materials provided by University of Innsbruck. Note: Materials may be edited for content and length.


Journal Reference:

  1. Elmar Haller, Russell Hart, Manfred J. Mark, Johann G. Danzl, Lukas Reichsöllner, Mattias Gustavsson, Marcello Dalmonte, Guido Pupillo, Hanns-Christoph Nägerl. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Nature, 2010; 466 (7306): 597 DOI: 10.1038/nature09259

Cite This Page:

University of Innsbruck. "Quantum phenomenon observed: Atoms form organized structure from unorganized one." ScienceDaily. ScienceDaily, 29 July 2010. <www.sciencedaily.com/releases/2010/07/100728131711.htm>.
University of Innsbruck. (2010, July 29). Quantum phenomenon observed: Atoms form organized structure from unorganized one. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/07/100728131711.htm
University of Innsbruck. "Quantum phenomenon observed: Atoms form organized structure from unorganized one." ScienceDaily. www.sciencedaily.com/releases/2010/07/100728131711.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins