Featured Research

from universities, journals, and other organizations

New light on speciation and biodiversity of marine microorganisms

Date:
August 5, 2010
Source:
The Flanders Marine Institute-VLIZ
Summary:
The world’s oceans are host to an enormous diversity of drifting, microscopic organisms, known as plankton. How this biodiversity has arisen has puzzled biologists for decades. An international team of researchers has now succeeded in elucidating how new planktonic species are formed, providing an explanation for the large biodiversity seen today.

The marine diatom Pseudo-nitzschia pungens forms microscopic, needle-like chains of cells. This diatom is known to form harmful algal blooms in coastal waters around the world by producing domoic acid, a neurotoxin which is responsible for the human illness called amnesic shellfish poisoning.
Credit: Image courtesy of The Flanders Marine Institute-VLIZ

The world's oceans are host to an enormous diversity of drifting, microscopic organisms, known as plankton. How this biodiversity has arisen has puzzled biologists for decades. An international team of researchers has now succeeded in elucidating how new planktonic species are formed, providing an explanation for the large biodiversity seen today.

The findings have been published in the Proceedings of the National Academy of Sciences.

Speciation is the evolutionary process by which new species arise. One of the most common theories states that species are formed when a population is separated into two groups by some geographic barrier. Once populations are isolated, gene flow is interrupted and each group goes its own evolutionary way, which may lead to speciation. For animals and plants on land, such barriers are easy to imagine, for example a mountain range or the sea between two islands.

For marine microbial organisms, speciation by geographic isolation seems unlikely. In the first place because oceans are interconnected, therefore lacking physical barriers. Secondly, planktonic microorganisms form gigantic populations, which are easily dispersed around the globe by ocean currents, resulting in an assumed uninterrupted gene flow. So how are new planktonic species formed and how did this large diversity arise in the sea?

By analysing microsatellites (short, hypervariable fragments of DNA) in a globally distributed planktonic diatom species, the researchers showed that, in contrast to the current idea, the dispersal of marine microorganisms is limited. They found that gene flow between population of distant coasts is interrupted, resulting in a clear geographic genetic structuring.

Furthermore, the study showed that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene (2.6 million to 12,000 years before present) this population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms.


Story Source:

The above story is based on materials provided by The Flanders Marine Institute-VLIZ. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Casteleyn, F. Leliaert, T. Backeljau, A.-E. Debeer, Y. Kotaki, L. Rhodes, N. Lundholm, K. Sabbe, W. Vyverman. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1001380107

Cite This Page:

The Flanders Marine Institute-VLIZ. "New light on speciation and biodiversity of marine microorganisms." ScienceDaily. ScienceDaily, 5 August 2010. <www.sciencedaily.com/releases/2010/07/100729075013.htm>.
The Flanders Marine Institute-VLIZ. (2010, August 5). New light on speciation and biodiversity of marine microorganisms. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/07/100729075013.htm
The Flanders Marine Institute-VLIZ. "New light on speciation and biodiversity of marine microorganisms." ScienceDaily. www.sciencedaily.com/releases/2010/07/100729075013.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
Get A Mortgage, Receive A Cat — Only In Russia

Get A Mortgage, Receive A Cat — Only In Russia

Newsy (Sep. 2, 2014) — The incentive is in keeping with a Russian superstition that it's good luck for a cat to be the first to cross the threshold of a new home. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins