Featured Research

from universities, journals, and other organizations

Brightness on fluorescent probes used to monitor biological activities of individual proteins increased

Date:
August 19, 2010
Source:
Carnegie Mellon University
Summary:
Researchers are turning up the brightness on a group of fluorescent probes that are used to monitor biological activities of individual proteins in real-time. This latest advance enhances their fluormodule technology causing it to glow an order of magnitude brighter than typical fluorescent proteins and five- to seven-times brighter than enhanced green fluorescent protein.

Yeast cells labeled with fluoromodules (top) glow brighter (bottom) when researchers incorporate dyedrons into the fluoromodule complex. The fluoromodules are expressed on the cells' surface.
Credit: Image courtesy of Carnegie Mellon University

Researchers from Carnegie Mellon University's Molecular Biosensor and Imaging Center (MBIC) are turning up the brightness on a group of fluorescent probes called fluoromodules that are used to monitor biological activities of individual proteins in real-time. This latest advance enhances their fluormodule technology by causing it to glow an order of magnitude brighter than typical fluorescent proteins. The new fluoromodules are five- to seven-times brighter than enhanced green fluorescent protein (EGFP), a development that will open new avenues for research.

In a paper published online in the Journal of the American Chemical Society, MBIC researchers unveil a new class of dendron-based fluorogenic dyes called "dyedrons," that amplify the signal emitted by their fluoromodules.

"By using concepts borrowed from chemistry, the same concepts used in things like quantum dots and light harvesting solar cells, we were able to create a structure that acts like an antenna, intensifying the fluorescence of the entire fluoromodule," said Marcel Bruchez, associate research professor of chemistry and MBIC program director.

MBIC's fluoromodules are made up of a dye called a fluorogen and a fluorgen-activating protein (FAP). The FAP is genetically expressed in a cell and linked to a protein of interest, where it remains dark until it comes into contact with its associated fluorogen. When the protein and dye bind, the complex emits a fluorescent glow, allowing researchers to easily track the protein on the cell surface and within living cells. Fluoromodules are unique in that they do not need to be washed off for specific labeling, they come in a spectrum of colors, and they are more photostable than other fluorescent proteins.

To make the fluoromodules brighter, the researchers amplified the signal of one of their existing probes. They took one of their standard fluorogens, malachite green, and coupled it with another dye called Cy3 in a complex the researchers called a "dyedron." The dyedron is based on a special type of tree-like structure called a dendron, with one malachite green molecule acting as the trunk and several Cy3 molecules acting as the branches.

The two dyes have overlapping emission and absorption spectra -- Cy3 typically emits energy at a wavelength where malachite green absorbs energy -- and this overlap allows the dyes to efficiently transfer energy between one another. When the Cy3 dye molecules become excited by a light source, such as a laser, they immediately "donate" their excitation energy to malachite green, boosting the signal being emitted by the malachite green.

Each dyedron is approximately 1-2 nanometers and 3000 g/mol in size. The very bright, but very small, dye particles allow the researchers to expand their live-cell imaging research. Previously, when conducting microscopy experiments using fluorescent proteins, fluoromodules and fluorescent dyes, if researchers wanted to increase the brightness, they would either increase the intensity of the laser used to visualize the proteins or label the protein being studied with numerous copies of the fluorescent tag. Both methods had the potential to alter the biology of the system being studied, either through the more intense energy coming from the laser or the increased weight caused by the multiple tags added to the protein. The new approach provides a single compact protein tag with signal enhancement provided by only modestly enlarging the targeted dye molecule.

The MBIC researchers are currently using fluoromodules to study proteins on the cell surface, and hope to take the technology inside of cells in the near future. Additionally, they will be creating dyedrons for their other existing FAP/dye complexes.

This research was funded by the National Institutes of Health (NIH) as part of the American Reinvestment and Recovery Act. MBIC is one of the NIH's National Technology Centers for Networks and Pathways.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "Brightness on fluorescent probes used to monitor biological activities of individual proteins increased." ScienceDaily. ScienceDaily, 19 August 2010. <www.sciencedaily.com/releases/2010/08/100809111228.htm>.
Carnegie Mellon University. (2010, August 19). Brightness on fluorescent probes used to monitor biological activities of individual proteins increased. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2010/08/100809111228.htm
Carnegie Mellon University. "Brightness on fluorescent probes used to monitor biological activities of individual proteins increased." ScienceDaily. www.sciencedaily.com/releases/2010/08/100809111228.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins