Featured Research

from universities, journals, and other organizations

Cellular mechanism responsible for modulating the permeability of blood vessels identified

Date:
August 12, 2010
Source:
Institut de recherches cliniques de Montreal
Summary:
Scientists have identified a new intracellular mechanism responsible for modulating vascular permeability: the nitrosylation of beta-catenin protein by nitric oxide. This scientific breakthrough could have a possible impact on the treatment of cancerous tumors by altering the permeability of the blood vessels irrigating them.

Dr. Jean-Philippe Gratton, Director of the Endothelial cell biology research unit at the Institut de recherches cliniques de Montréal (IRCM), has identified a new intracellular mechanism responsible for modulating vascular permeability: the nitrosylation of beta-catenin protein by nitric oxide. This scientific breakthrough could have a possible impact on the treatment of cancerous tumours by altering the permeability of the blood vessels irrigating them.

Dr. Gratton's team will publish the results of its research August 13 in the scientific journal Molecular Cell.

The permeability of blood vessels is determined, in part, by the space between endothelial cells, or the cells lining the inside of all blood vessels. Increasing permeability is an essential step in angiogenesis, the process of formation of new blood vessels. Vascular endothelial growth factor (VEGF) is responsible for triggering angiogenesis, and increasing vascular permeability through the activation of the eNOS enzyme, which in turn produces nitric oxide (NO), an intracellular gas.

"We already knew that NO plays a very important role in the modulation of vascular permeability and that it could represent a target for blocking the growth of tumours," explains Dr. Gratton. "However, we ignored how it worked. We have now shown that beta-catenin is the specific protein targeted by nitrosylation -- the chemical modification of proteins in endothelial cells by NO."

Nitrosylation of beta-catenin allows endothelial cells to detach from one another, thus increasing vascular permeability. This process could eventually help regenerate damaged arteries after a heart attack. On the contrary, reducing endothelial permeability in cancerous tumours could help prevent the creation of new blood vessels on which they feed, and consequently block their growth. A better understanding of NO's functions could therefore have an important impact on numerous fields of research, as this molecule is involved in many physiological and pathological processes.

"The identification of new cell mechanisms responsible for altering the permeability of blood vessels is a an important step in cancer research," says Dr. Morag Park, Scientific Director of the Canadian Institutes of Health Research's Institute of Cancer Research, "this discovery can potentially have a significant impact on how we treat certain types of tumour growth."

All participants in this study are members of the IRCM. Sébastien Thibeault, doctorate student, and Yohann Rautureau, postdoctoral fellow, are the study's co-authors.

The research conducted by Dr. Gratton and his team were funded by the Canadian Institutes of Health Research (CIHR).


Story Source:

The above story is based on materials provided by Institut de recherches cliniques de Montreal. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sébastien Thibeault, Yohann Rautureau, Malika Oubaha, Denis Faubert, Brian C. Wilkes, Chantal Delisle, Jean-Philippe Gratton. S-Nitrosylation of %u03B2-Catenin by eNOS-Derived NO Promotes VEGF-Induced Endothelial Cell Permeability. Molecular Cell, Volume 39, Issue 3, 468-476 DOI: 10.1016/j.molcel.2010.07.013

Cite This Page:

Institut de recherches cliniques de Montreal. "Cellular mechanism responsible for modulating the permeability of blood vessels identified." ScienceDaily. ScienceDaily, 12 August 2010. <www.sciencedaily.com/releases/2010/08/100812151638.htm>.
Institut de recherches cliniques de Montreal. (2010, August 12). Cellular mechanism responsible for modulating the permeability of blood vessels identified. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/08/100812151638.htm
Institut de recherches cliniques de Montreal. "Cellular mechanism responsible for modulating the permeability of blood vessels identified." ScienceDaily. www.sciencedaily.com/releases/2010/08/100812151638.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) — Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) — Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) — Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) — Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins