Featured Research

from universities, journals, and other organizations

Virus may act as 'evolution-proof' biopesticide against malaria

Date:
August 21, 2010
Source:
American Society for Microbiology
Summary:
A naturally occurring virus in mosquitoes may serve as a "late-life-acting" insecticide by killing older adult mosquitoes that are responsible for the bulk of malaria transmission.

A naturally occurring virus in mosquitoes may serve as a "late-life-acting" insecticide by killing older adult mosquitoes that are responsible for the bulk of malaria transmission. The researchers from Johns Hopkins University and the Johns Hopkins Malaria Research Institute, Baltimore, Maryland, detail their findings in the August 2010 issue of the Journal of Virology.

Related Articles


Malaria infects hundreds of thousands of people each year and is the cause of over a million deaths worldwide. Insecticides are one of the main strategies currently used to control malaria transmission, however, evolving resistance to such therapies continues to impact such efforts. "Late-life-acting" insecticides (LLAIs) are now being examined as a new approach for controlling malaria as they selectively kill older mosquitoes that spread the disease, while younger mosquitoes survive just long enough to reproduce.

"Reproduction allows for relaxation of evolutionary pressures that select for resistance to the agent," say the researchers. "If resistance alleles exert fitness costs, there are theoretical scenarios under which resistance is not expected to evolve, leading some to provocatively term LLAIs as 'evolution-proof'."

Densonucleosis viruses (or densoviruses [DNVs]) are naturally occurring parvoviruses that have been identified in multiple mosquito species. Some DNVs typically infect during the larval stage and are lethal, however, in this study researchers suggest that the Anopheles gambiae densovirus (AgDNV) may infect at low levels during early life and replicate to lethal levels at adult age. Analysis following infection showed that although AgDNV levels increased modestly during larval development they still replicated slower resulting in significantly decreased virus levels during this stage. Additionally, virus levels greatly increased in 7-to-10-day-old adults.

"Ultimately, we expect that a properly engineered LLAI AgDNV can be deployed in the field to significantly modulate malaria transmission," say the researchers.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ren et al. Potential for the Anopheles gambiae Densonucleosis Virus To Act as an "Evolution-Proof" Biopesticide. Journal of Virology, 2010; 84 (15): 7726 DOI: 10.1128/JVI.00631-10

Cite This Page:

American Society for Microbiology. "Virus may act as 'evolution-proof' biopesticide against malaria." ScienceDaily. ScienceDaily, 21 August 2010. <www.sciencedaily.com/releases/2010/08/100820133238.htm>.
American Society for Microbiology. (2010, August 21). Virus may act as 'evolution-proof' biopesticide against malaria. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2010/08/100820133238.htm
American Society for Microbiology. "Virus may act as 'evolution-proof' biopesticide against malaria." ScienceDaily. www.sciencedaily.com/releases/2010/08/100820133238.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins