Featured Research

from universities, journals, and other organizations

How to count the messenger out: Mapping the structure of protonated water clusters

Date:
August 24, 2010
Source:
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Summary:
Water molecules are continuously forming short-lived networks called clusters. These can in turn bind positively charged protons, and such clusters can provide active functional groups in proteins. Using infrared spectroscopy, it is possible to determine the bond strengths, geometrical structures and chemical properties of protonated water clusters. In order to measure the spectrum of molecular vibrations in clusters it is, however, necessary to use other molecules as messengers.

Water molecules are continuously forming short-lived networks called clusters. These can in turn bind positively charged protons, and such clusters can provide active functional groups in proteins. Using infrared spectroscopy, it is possible to determine the bond strengths, geometrical structures and chemical properties of protonated water clusters. In order to measure the spectrum of molecular vibrations in clusters it is, however, necessary to use other molecules as messengers.

A team of physicists and chemists including Dr. Gerald Mathias of LMU Munich and Professor Dominik Marx of the Ruhr-Universität Bochum has, for the first time, described how these messengers influence the assignment of spectral bands by infrared spectroscopy. "The results will improve our ability to interpret spectroscopic data," says Mathias, "and that is an important step towards a better understanding of the function of protonated water clusters in proteins. Because water molecules can be found virtually everywhere, the new findings will also have a positive impact on studies devoted to atmospheric chemistry and interstellar chemistry."

The research is published online in Angewandte Chemie.

Water molecules don't like to be alone. The reason for their gregariousness is that they are polar. This causes neighboring water molecules to attract each other, forming so-called hydrogen bonds that link them into chains or clusters. Members of such clusters are restricted in their movements. That is why evaporation of water requires the input of relatively large amounts of energy: the energy is needed to break hydrogen-bond networks apart. Protonated water clusters, which have protons (positively charged hydrogen nuclei) bound to them, are important model systems for the investigation of proton hydration in aqueous solutions, the process that determines the acidity (pH) and electrical conductivity of water.

The smallest protonated water cluster is the hydronium cation, which consists of a single water molecule with an associated proton. Its chemical formula is H3O+. The so-called Zundel ion has a rather more complicated structure: here a single proton is shared by two water molecules. It is possible to determine the properties of various types of water clusters with the aid of infrared spectroscopy. When molecules are irradiated with infrared light, they vibrate in ways that depend on the wavelength (the color) of the light. The frequency of the resulting vibrations allows one to deduce the three-dimensional structure of the molecule and the strength of the bonds between its atoms.

In order to measure the vibrational spectra of water clusters in the gas phase, one needs to use small molecules or one of the noble gases, such as neon or argon, as messengers. These adsorb to the clusters and transmit their vibrations, allowing them to be detected more easily. "These spectra may be modified by the messenger molecules, so that it is important to understand their interactions with the clusters," says Dr. Gerald Mathias of the Faculty of Physics at LMU. Together with Professor Dominik Marx's group at the Ruhr-Universität Bochum, Mathias has now shown that the messengers have unexpected effects on the absorption bands in the spectrum of even the simple hydronium cation. However, by simulating the dynamics of the complexes formed between protonated water clusters and messenger molecules, the team was able to extract the real spectra for the cation from the raw data obtained in the presence of the messengers.

"The results obtained with the Zundel ion which is constantly changing its form were even more interesting," says Mathias. "We were able to show that this structure exists in two different forms. In one, the messenger is tightly bound to the cation, in the other it is only loosely associated with it and orbits around it. In the latter case, we observed that the infrared absorption spectrum was practically identical to that calculated for the unbound Zundel cation -- so that these spectra are not influenced by the presence of the messenger molecules." This result provides a better understanding of experimental messenger spectroscopy, which is used for chemical analyses of the components of Earth's atmosphere and to detect molecules in interstellar space. The researchers hope that it will also provide new insights into the structure and function of protonated water clusters in proteins.


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.


Journal References:

  1. Marcel Baer, Dominik Marx, Gerald Mathias. Theoretical Messenger Spectroscopy of Microsolvated Hydronium and Zundel Cations. Angewandte Chemie, 23 August 2010 DOI: 10.1002/anie.201001672
  2. G. Mathias, D. Marx. Structures and spectral signatures of protonated water networks in bacteriorhodopsin. Proceedings of the National Academy of Sciences, 2007; 104 (17): 6980 DOI: 10.1073/pnas.0609229104

Cite This Page:

Ludwig-Maximilians-Universitaet Muenchen (LMU). "How to count the messenger out: Mapping the structure of protonated water clusters." ScienceDaily. ScienceDaily, 24 August 2010. <www.sciencedaily.com/releases/2010/08/100824082224.htm>.
Ludwig-Maximilians-Universitaet Muenchen (LMU). (2010, August 24). How to count the messenger out: Mapping the structure of protonated water clusters. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/08/100824082224.htm
Ludwig-Maximilians-Universitaet Muenchen (LMU). "How to count the messenger out: Mapping the structure of protonated water clusters." ScienceDaily. www.sciencedaily.com/releases/2010/08/100824082224.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins