Featured Research

from universities, journals, and other organizations

Characterizing channels for transport of melt in mantle

Date:
August 31, 2010
Source:
American Geophysical Union
Summary:
Rock in the Earth's mantle melts as it upwells toward the surface, as can be seen beneath mid-ocean ridge spreading centers. This buoyant melt rises through the mantle to the surface, where it solidifies and becomes part of the Earth's crust. However, the pathways through which mantle melt migrates have not been well understood. It had been suggested that channels through highly porous dunite rock provided pathways for mantle melt, but the depth and other features of these channels have not been known.

Rock in the Earth's mantle melts as it upwells toward the surface, as can be seen beneath mid-ocean ridge spreading centers. This buoyant melt rises through the mantle to the surface, where it solidifies and becomes part of the Earth's crust. However, the pathways through which mantle melt migrates have not been well understood. It had been suggested that channels through highly porous dunite rock provided pathways for mantle melt, but the depth and other features of these channels have not been known.

To investigate how dunite channels would form and how melt would flow through them in an upwelling mantle, Liang et al. conduct numerical simulations. They find that interconnected dunite channels form the shallow part of the porous channels through which melt passes. However, deeper in the mantle, melt travels through channels composed of the rocks harzburgite and lherzolite.

In addition, the simulation shows that primary channels deeper in the mantle can lead to the formation of shallower secondary channels created by reactions between melt and rock during melt migration. These results could help geologists interpret field measurements and improve models for mantle melt migration, shedding light on mantle dynamics and crust formation.

Authors of the study include: Yan Liang, E. Marc Parmentier: Department of Geological Sciences, Brown University, Providence, Rhode Island, USA; Alan Schiemenz: Department of Geological Sciences, Brown University, Providence, Rhode Island, USA and Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA; Marc A. Hesse: Department of Geological Sciences, Brown University, Providence, Rhode Island, USA, now at Department of Geological Sciences, University of Texas at Austin, Austin, Texas, USA; Jan S. Hesthaven: Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA.


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yan Liang, Alan Schiemenz, Marc A. Hesse, E. Marc Parmentier, Jan S. Hesthaven. High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite. Geophysical Research Letters, 2010; 37 (15): L15306 DOI: 10.1029/2010GL044162

Cite This Page:

American Geophysical Union. "Characterizing channels for transport of melt in mantle." ScienceDaily. ScienceDaily, 31 August 2010. <www.sciencedaily.com/releases/2010/08/100831095347.htm>.
American Geophysical Union. (2010, August 31). Characterizing channels for transport of melt in mantle. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/08/100831095347.htm
American Geophysical Union. "Characterizing channels for transport of melt in mantle." ScienceDaily. www.sciencedaily.com/releases/2010/08/100831095347.htm (accessed October 1, 2014).

Share This



More Earth & Climate News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Seismic Activity Halts Recovery at Japan Volcano

Seismic Activity Halts Recovery at Japan Volcano

AP (Sep. 30, 2014) Rescuers were forced to suspend plans to recover at least two dozen bodies from near the summit of Mount Ontake in central Japan on Tuesday after increased seismic activity raised concern about the possibility of another eruption. (Sept. 30) Video provided by AP
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins