Featured Research

from universities, journals, and other organizations

Metal-mining bacteria are green chemists

Date:
September 2, 2010
Source:
Society for General Microbiology
Summary:
Microbes could soon be used to convert metallic wastes into high-value catalysts for generating clean energy, say scientists.

Bacterial cells that can accumulate high quantities of precious metals are an efficient and green alternative to traditional recycling methods. Here, E. coli cells are surrounded by nanoparticles of palladium and gold (black deposits).
Credit: Kevin Deplanche

Microbes could soon be used to convert metallic wastes into high-value catalysts for generating clean energy, say scientists writing in the September issue of Microbiology.

Related Articles


Researchers from the School of Biosciences at the University of Birmingham have discovered the mechanisms that allow the common soil bacterium Desulfovibrio desulfuricans to recover the precious metal palladium from industrial waste sources.

Palladium is one of the platinum group metals (PGMs) which are among the most precious resources on earth. They possess a wide variety of applications, due to their exceptional chemical properties. PGMs are routinely used in many catalytic systems and are the active elements of autocatalytic converters that reduce greenhouse gas emissions.

Dr Kevin Deplanche who led the study explained why new ways of recovering PGMs are needed. "These metals are a finite resource and this is reflected in their high market value," he said. "Over the last 10 years, demand has consistently outstripped supply and so research into alternative ways of recovering palladium from secondary sources is paramount to ensuring future availability of this resource."

Previous work in the team's lab showed that Desulfovibrio desulfuricans was able to reduce palladium in industrial wastes into metallic nanoparticles with biocatalytic activity. Now, the precise molecules involved in the reduction process have been identified. Hydrogenase enzymes located on the surface membrane of the bacterium carry out the reduction of palladium, which results in the accumulation of catalytic nanoparticles. The bacterial cells coated with palladium nanoparticles are known as 'BioPd."

The group believes that BioPd has great potential to be used for generating clean energy. "Research in our group has shown that BioPd is an excellent catalyst for the treatment of persistent pollutants, such as chromium, that is used in the paint industry. BioPd could even be used in a proton exchange fuel cell to make clean electricity from hydrogen," said Dr Deplanche. "Our ultimate aim is to develop a one-step technology that allows for the conversion of metallic wastes into high value catalysts for green chemistry and clean energy generation," he said.


Story Source:

The above story is based on materials provided by Society for General Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kevin Deplanche, Isabelle Caldelari, Iryna P. Mikheenko, Frank Sargent, and Lynne E. Macaskie. Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology, 2010; 156: 2630-2640 DOI: 10.1099/mic.0.036681-0

Cite This Page:

Society for General Microbiology. "Metal-mining bacteria are green chemists." ScienceDaily. ScienceDaily, 2 September 2010. <www.sciencedaily.com/releases/2010/09/100901191137.htm>.
Society for General Microbiology. (2010, September 2). Metal-mining bacteria are green chemists. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/09/100901191137.htm
Society for General Microbiology. "Metal-mining bacteria are green chemists." ScienceDaily. www.sciencedaily.com/releases/2010/09/100901191137.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins