Featured Research

from universities, journals, and other organizations

Brainy worms: Scientists uncover counterpart of cerebral cortex in marine worms

Date:
September 3, 2010
Source:
European Molecular Biology Laboratory
Summary:
Unexpectedly, scientists have now discovered a true counterpart of the cerebral cortex in an invertebrate, a marine worm. Their findings give an idea of what the most ancient higher brain centers looked like, and what our distant ancestors used them for.

A virtual Platynereis brain (left), created by averaging microscopy images of the brains of 36 different individuals, onto which scientists mapped gene activity (right). Perspective shows the brain as viewed from inside a Platynereis larvae, at 48 hours' old.
Credit: EMBL/R.Tomer

Our cerebral cortex, or pallium, is a big part of what makes us human: art, literature and science would not exist had this most fascinating part of our brain not emerged in some less intelligent ancestor in prehistoric times. But when did this occur and what were these ancestors? Unexpectedly, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now discovered a true counterpart of the cerebral cortex in an invertebrate, a marine worm.

Related Articles


Their findings are published in Cell, and give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.

It has long been clear that, in evolutionary terms, we share our pallium with other vertebrates, but beyond that was mystery. This is because even invertebrates that are clearly related to us -- such as the fish-like amphioxus -- appear to have no similar brain structures, nothing that points to a shared evolutionary past. But EMBL scientists have now found brain structures related to the vertebrate pallium in a very distant cousin -- the marine ragworm Platynereis dumerilii, a relative of the earthworm -- which last shared an ancestor with us around 600 million years ago.

"Two stunning conclusions emerge from this finding," explains Detlev Arendt, who headed the study: "First, the pallium is much older than anyone would have assumed, probably as old as higher animals themselves. Second, we learn that it came out of 'the blue' -- as an adaptation to early marine life in Precambrian oceans."

To uncover the evolutionary origins of our brain, EMBL scientist Raju Tomer, who designed and conducted the work, took an unprecedentedly deep look at the regions of Platynereis dumerilii's brain responsible for processing olfactory information -- the mushroom-bodies. He developed a new technique, called cellular profiling by image registration (PrImR), which is the first to enable scientists to investigate a large number of genes in a compact brain and determine which are turned on simultaneously. This technique enabled Tomer to determine each cell's molecular fingerprint, defining cell types according to the genes they express, rather than just based on their shape and location as was done before.

"Comparing the molecular fingerprints of the developing ragworms' mushroom-bodies to existing information on the vertebrate pallium," Arendt says, " it became clear that they are too similar to be of independent origin and must share a common evolutionary precursor."

This ancestral structure was likely a group of densely packed cells, which received and processed information about smell and directly controlled locomotion. It may have enabled our ancestors crawling over the sea floor to identify food sources, move towards them, and integrate previous experiences into some sort of learning.

"Most people thought that invertebrate mushroom-bodies and vertebrate pallium had arisen independently during the course of evolution, but we have proven this was most probably not the case," says Tomer. Arendt concludes: "The evolutionary history of our cerebral cortex has to be rewritten."


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Raju Tomer, Alexandru S. Denes, Kristin Tessmar-Raible, Detlev Arendt. Profiling by Image Registration Reveals Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium. Cell, 2010; 142 (5): 800-809 DOI: 10.1016/j.cell.2010.07.043

Cite This Page:

European Molecular Biology Laboratory. "Brainy worms: Scientists uncover counterpart of cerebral cortex in marine worms." ScienceDaily. ScienceDaily, 3 September 2010. <www.sciencedaily.com/releases/2010/09/100902121051.htm>.
European Molecular Biology Laboratory. (2010, September 3). Brainy worms: Scientists uncover counterpart of cerebral cortex in marine worms. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2010/09/100902121051.htm
European Molecular Biology Laboratory. "Brainy worms: Scientists uncover counterpart of cerebral cortex in marine worms." ScienceDaily. www.sciencedaily.com/releases/2010/09/100902121051.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Signs You Might Be The Passive Aggressive Friend

Signs You Might Be The Passive Aggressive Friend

BuzzFeed (Jan. 28, 2015) "No, I&apos;m not mad. Why, are you mad?" Video provided by BuzzFeed
Powered by NewsLook.com
City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins