Featured Research

from universities, journals, and other organizations

New method for infrared remote sensing to analyze traffic pollution

Date:
September 7, 2010
Source:
Universidad Carlos III de Madrid - Oficina de Información Científica
Summary:
Scientists in Spain are testing infrared remote sensing technology to evaluate the pollutant emissions associated with motor vehicle traffic which allows for analysis of all the gases of environmental interest with one sole instrument in a sole measurement.

Scientists at Universidad Carlos III de Madrid (UC3M) are testing infrared remote sensing technology to evaluate the pollutant emissions associated with motor vehicle traffic which allows for analysis of all the gases of environmental interest with one sole instrument in a sole measurement

Related Articles


The methodology, which has been used in this research in collaboration with the Universidad Europea de Madrid, is based on the Open-Path FTIR technique which takes advantage of specific properties of gases in order to detect them: they absorb radiation only in certain wave lengths which are always the same and particular to each gas. Many gases have absorption lines or bands in the infrared, for which this area of the electromagnetic spectrum is very useful for the remote detection of gases, according to the authors of this research from the UC3M Department of Physics. "With this technique all of the gases that have absorption bands in the infrared can be measured simultaneously, which are almost all of those that are of environmental interest: carbon monoxide, carbon dioxide, nitrogen oxides, ozone, methane, hydrocarbons, sulfur dioxide, chlorhydric acid, etc.," one of the researchers in charge of this study, Professor Antonio de Castro, pointed out.

The object of their research is to experimentally determine the concentration of the chief gas pollutants associated with motor vehicle traffic. For that purpose, the researchers have developed a methodology that takes measurements outside of the concentration of different gases, mainly carbon monoxide and carbon dioxide. "This technique offers the advantages inherent to a non-intrusive measurement technique, avoiding having to take gas samples in special recipients and providing average concentrations during a measurement line defined in real time," this researcher from the UC3M Infrared Laboratory explained. In addition, the technique offers another important advantage: the capacity to simultaneously calculate the concentration of all the gases of interest taken from the same measurement.

Possible applications

This technique is highly valuable for resolving numerous environmental problems associated with atmospheric pollution, especially when the toxicity of the pollutants make simple in situ measurement dangerous, since it is not necessary to go into the polluted area to carry out the measurement. "The possibility of monitoring a wide spectrum of gases from a distance and observing wide areas in such a simple manner makes this technique a useful tool," the study's co-author, Professor Susana Briz asserted. She further pointed out that this technique allows, in addition to the measurement of the concentration of pollutants, the calculation of emissions associated with different environmental issues, such as the characterization and study of emissions associated with forest fires, green house effect gas emissions from dumps and agriculture installations, monitoring volcanic gases, etc. "You could say," Briz concluded, "that this technique is useful for almost all of the problems associated with atmospheric pollution and in general with the detection of gases."

To take a measurement it is necessary to have an infrared source, such as a very hot object, and a spectrometer, an instrument which analyzes infrared radiation that comes from the origin with its wave lengths, just as a prism does when it separates white light into the colors of the rainbow, the researchers explained. "If there is a certain gas between the infrared source and the spectrometer, its wave length characteristic is absorbed and that is detected by the instrument," Susana Briz explained. "Afterwards, the analysis programs are also capable of determining the concentration of that gas," she added.

At the moment, various field experiments in the towns of Villaviciosa de Odón and Leganés have been carried out to test the validity of the method to calculate emissions based on concentration measurements with the Open-Path FTIR technique, verifying the methodology with standardized equipment (extractives). The methodology proposed, based on dispersion models, has been proven in the opposite way: the emissions calculated independently (EMFAC2007) have been introduced, and the calculated concentrations have been compared with the experimental ones. "In light of these results, we can assert that the proposed methodology is an effective tool to experimentally estimate the emission factors associated with a certain way," the researchers concluded.


Story Source:

The above story is based on materials provided by Universidad Carlos III de Madrid - Oficina de Información Científica. Note: Materials may be edited for content and length.


Cite This Page:

Universidad Carlos III de Madrid - Oficina de Información Científica. "New method for infrared remote sensing to analyze traffic pollution." ScienceDaily. ScienceDaily, 7 September 2010. <www.sciencedaily.com/releases/2010/09/100907071429.htm>.
Universidad Carlos III de Madrid - Oficina de Información Científica. (2010, September 7). New method for infrared remote sensing to analyze traffic pollution. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/09/100907071429.htm
Universidad Carlos III de Madrid - Oficina de Información Científica. "New method for infrared remote sensing to analyze traffic pollution." ScienceDaily. www.sciencedaily.com/releases/2010/09/100907071429.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) — Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) — The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins