Featured Research

from universities, journals, and other organizations

Genes tied to deadliest ovarian cancers identified

Date:
September 13, 2010
Source:
Johns Hopkins Medical Institutions
Summary:
Scientists have identified two genes whose mutations appear to be linked to ovarian clear cell carcinoma, one of the most aggressive forms of ovarian cancer. Clear cell carcinoma is generally resistant to standard therapy.

Scientists at the Johns Hopkins Kimmel Cancer Center have identified two genes whose mutations appear to be linked to ovarian clear cell carcinoma, one of the most aggressive forms of ovarian cancer. Clear cell carcinoma is generally resistant to standard therapy.

In an article published online in the September 8 issue of Science Express, the researchers report that they found an average of 20 mutated genes per each ovarian clear cell cancer studied. Two of the genes were more commonly mutated among the samples: ARID1A, a gene whose product normally suppresses tumors; and PPP2R1A, an oncogene that, when altered, helps turn normal cells into tumor cells. ARID1A mutations were identified in more than half of tumors studied, and, according to Siân Jones, Ph.D., research associate at the Johns Hopkins Kimmel Cancer Center, "this gene may play a significant role in this type of cancer."

The researchers say that ARID1A and PPP2R1A had not previously been linked to ovarian cancer, and "they may provide opportunities for developing new biomarkers and therapies that target those genes," says Nickolas Papadopoulos, Ph.D., an associate professor of oncology and director of Translational Genetics at the Ludwig Center for Cancer Genetics & Therapeutics at the Johns Hopkins Kimmel Cancer Center.

For the study, the scientists evaluated mutations in 18,000 protein-encoding genes in ovarian clear cell tumors from eight patients at Johns Hopkins and from institutions in Taiwan and Japan. They purified the cancer cells, and analyzed genes from those cells and from normal cells obtained from the blood or uninvolved tissues of the same patients.

Researchers identified 268 mutations in 253 genes among the eight tumors, with an average of 20 mutations per tumor.

Next, they determined the amino acid makeup, or sequences, of four genes with the most prevalent mutations, including ARID1A, in the tumor and normal tissues of an additional 34 ovarian clear cell cancer patients. Altogether, ARID1A mutations were identified in 57 percent of the 42 tumors. PPP2R1A mutations were found in 7.1 percent of the tumors.

The landscape of cancer-related genes can be likened to a few "mountains" (highly prevalent mutations) among many "hills" (genes with less prevalence), says Papadopoulos, and "ARID1A is one of the biggest mountains found in recent years."

The protein encoded by ARID1A is a component of a cellular structure called a chromatin remodeling complex. Chromatin compresses DNA to make it fit inside cells and shields it from any other chemical signals, providing a means for controlling how and when the DNA is read. When chromatin gets remodeled, the components are shuffled and certain areas of DNA become exposed, allowing genes to be switched on or off. When the ARID1A gene is mutated, the chromatin remodeling complex is altered, allowing genes to be incorrectly switched on or off.

The Johns Hopkins scientists say mutated ARID1A can now be linked to so-called "epigenetic" changes -- alterations to DNA occurring outside of the genome, in this case, the chromatin. "The mutations in ARID1A provide an important new link between genetic and epigenetic mechanisms in human cancer and may help identify epigenetic changes which can be targeted with therapies," says Victor Velculescu, M.D., Ph.D., associate professor of oncology at the Johns Hopkins Kimmel Cancer Center.

The researchers next plan to search for genes whose chromatin is specifically affected by ARID1A inactivation.

Ovarian clear cell carcinoma accounts for about 10 percent of cancers that start in the cells on the surface of the ovaries. It mainly affects women ages 40 to 80 and is resistant to chemotherapy.

Funding for this study was provided by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the AACR Stand Up to Cancer-Dream Team Translational Cancer Research Grant, the Virginia and D.K. Ludwig Fund for Cancer Research, the Department of Defense, and the National Institutes of Health.

Additional study authors include: Tian-Li Wang, Ie-Ming Shih, Richard Roden, Luis A. Jr. Diaz, Bert Vogelstein and Kenneth Kinzler of Johns Hopkins; Tsui-Lien Mao of the National Taiwan University College of Medicine in Taipei; Kentaro Nakayama of Shimane University in Izumo, Japan; and Ruth Glas and Dennis Slamon of the David Geffen School of Medicine at the University of California-Los Angeles.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sian Jones, Tian-Li Wang, Ie-Ming Shih, Tsui-Lien Mao, Kentaro Nakayama, Richard Roden, Ruth Glas, Dennis Slamon, Luis A. Diaz Jr., Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculescu, and Nickolas Papadopoulos. Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma. Science, 2010; DOI: 10.1126/science.1196333

Cite This Page:

Johns Hopkins Medical Institutions. "Genes tied to deadliest ovarian cancers identified." ScienceDaily. ScienceDaily, 13 September 2010. <www.sciencedaily.com/releases/2010/09/100908171116.htm>.
Johns Hopkins Medical Institutions. (2010, September 13). Genes tied to deadliest ovarian cancers identified. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/09/100908171116.htm
Johns Hopkins Medical Institutions. "Genes tied to deadliest ovarian cancers identified." ScienceDaily. www.sciencedaily.com/releases/2010/09/100908171116.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) — Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) — Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) — Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) — Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins