Featured Research

from universities, journals, and other organizations

Novel target for existing drug may improve success of radiation therapy

Date:
September 20, 2010
Source:
Washington University in St. Louis
Summary:
Scientists have discovered a new drug target that could improve the effectiveness of radiation for hard-to-treat cancers. The finding focuses on the role of the enzyme cytosolic phospholipase A2 (cPLA2). This enzyme promotes development and functioning of blood vessel networks that feed malignant tumors, enabling them to overcome the effects of radiation.

New blood vessels formed within cancerous tumors enable survival and growth. Inhibition of the enzyme cPLA2 leads to collapsed vessels, stopping blood flow to the tumor.
Credit: Image courtesy of Washington University in St. Louis

Scientists at Washington University School of Medicine in St. Louis have discovered a new drug target that could improve the effectiveness of radiation for hard-to-treat cancers.

The finding, published in the Journal of the National Cancer Institute, focuses on the role of the enzyme cytosolic phospholipase A2 (cPLA2). This enzyme promotes development and functioning of blood vessel networks that feed malignant tumors, enabling them to overcome the effects of radiation.

They have also identified a drug that stops production of the enzyme. Inhibiting the enzyme can stop the flow of blood tumors need to survive.

Cancers thrive and spread thanks to a unique ability to recruit networks of new blood vessels that penetrate into tumors, bringing oxygen and nutrients and potentially transporting cancer cells to other parts of the body.

Cancer cells start the process of new blood vessel construction, called angiogenesis, by releasing specific molecules into surrounding normal tissue, kicking off a cascade of molecular signals that cause cells lining existing blood vessels to divide and create new vessels. These new vessel networks link the tumor to the circulatory system and its life-sustaining cargo.

Lung cancer and glioblastoma, the most common type of primary brain tumor, are particularly adept at inducing new blood vessel creation via angiogenesis. They are also highly resistant to treatment by radiation.

"Our original objective was to measure the signaling molecules that enable lung and brain cancer to be resistant to radiation," says Dennis Hallahan, MD, the Elizabeth H. and James S. McDonnell III Distinguished Professor in Medicine and chair of the Department of Radiation Oncology at the School of Medicine and senior author of the study.

"There are hundreds of signaling molecules, but the enzyme cPLA2 stood out," Hallahan says. "Radiation of tumor cells triggers production of cPLA2 within two minutes and it contributes to tumor survival."

The cPLA2 enzyme is known to regulate the levels of at last three molecules that promote tumor angiogenesis (the creation of new blood vessel networks to feed cancer cells).

The researchers set out to learn if they could enhance the effect of radiation therapy for lung and brain cancers by inhibiting this enzyme.

The idea was to implant tumors into normal mice and into mice that had been genetically engineered to be unable to produce cPLA2 and then compare the effect of radiation therapy on tumor progression in each.

The immense power of cPLA2 became apparent to Hallahan when a graduate student complained that her experiment failed because she could not grow tumors in mice that lacked the gene that produces cPLA2.

"While implanted tumors progressed as expected in normal mice used in the experiment, they were virtually undetectable in cPLA2 deficient mice," Hallahan says. "The 'failed experiment' was actually a significant discovery of the enormous control cPLA2 has in regulating tumor angiogenesis."

The scientists then examined the blood vessels of the cPLA2 deficient mice. While the blood vessels of cPLA2 deficient mice appeared normal, close inspection revealed the absence of a certain type of contractile cell that regulates blood flow.

"Without these cells, blood vessels can still grow into the tumor but blood cannot flow to the tumor," Hallahan says. "Cancer cannot survive without blood flow to feed it."

The central role of cPLA2 in determining the presence or absence of these contractile cells makes it a prime target for interventional therapy.

"Drugs that target cPLA2 have enormous potential for improving the success of radiation against highly angiogenic tumors," Hallahan says.

Hallahan has already identified an existing drug that inhibits cPLA2. It is a compound originally developed by Wyeth, now part of Pfizer, as a treatment for arthritis. The drug had advanced to Phase 2 testing before being discontinued as a potential arthritis treatment.

Reaching Phase 2 testing, however, suggests that a compound has been proven safe, regardless of whether or not it meets performance standards for the specific medical condition for which it was made. These drugs are typically then tested for other uses.

Hallahan learned of the Pfizer compound from an innovative collaboration between Pfizer and Washington University that allows Washington University scientists to view extensive research data on a large array of Pfizer pharmaceutical candidates that are or were in clinical testing.

Don Frail, PhD, chief scientific officer of Pfizer's Indication's Discovery Unit, says the majority of drug candidates tested in development do not give the desired result.

"Yet those drugs that do succeed typically have multiple uses," Frail says. "Hallahan's research has led to an entirely new potential use for one of these compounds in an area of high patient need that otherwise might have been overlooked. This is exactly what our partnership with Washington University is about and is among the first to be funded through the new relationship."

Hallahan is currently partnering with Craig Wegner, PhD, in the Indications Discovery Unit of Pfizer to further understand the pathways impacted by cPLA2 and to evaluate the drug that inhibits its action.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. The original article was written by Lee Phillion. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amanda G. Linkous, Eugenia M. Yazlovitskaya, Dennis E. Hallahan. Cytosolic Phospholipase A2 and Lysophospholipids in Tumor Angiogenesis. JNCI Journal of the National Cancer Institute, 2010; DOI: 10.1093/jnci/djq290

Cite This Page:

Washington University in St. Louis. "Novel target for existing drug may improve success of radiation therapy." ScienceDaily. ScienceDaily, 20 September 2010. <www.sciencedaily.com/releases/2010/09/100916091751.htm>.
Washington University in St. Louis. (2010, September 20). Novel target for existing drug may improve success of radiation therapy. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/09/100916091751.htm
Washington University in St. Louis. "Novel target for existing drug may improve success of radiation therapy." ScienceDaily. www.sciencedaily.com/releases/2010/09/100916091751.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins