Featured Research

from universities, journals, and other organizations

Insecticides from genetically modified corn found in adjacent streams

Date:
October 14, 2010
Source:
Cary Institute of Ecosystem Studies
Summary:
Aquatic ecologists report that streams throughout the Midwestern Corn Belt are receiving insecticidal proteins that originate from adjacent genetically modified crops. The protein enters streams through runoff and when corn leaves, stalks, and plant parts are washed into stream channels.

In a paper published this week in the Proceedings of the National Academy of Sciences, Cary Institute aquatic ecologist Dr. Emma Rosi-Marshall and colleagues report that streams throughout the Midwestern Corn Belt are receiving insecticidal proteins that originate from adjacent genetically modified crops. The protein enters streams through runoff and when corn leaves, stalks, and plant parts are washed into stream channels.

Related Articles


Genetically-modified plants are a mainstay of large-scale agriculture in the American Midwest, where corn is a dominant crop. In 2009, more than 85% of U.S. corn crops were genetically modified to repel pests and/or resist herbicide exposure. Corn engineered to release an insecticide that wards off the European corn borer, commonly referred to as Bt corn, comprised 63% of crops. The tissue of these plants has been modified to express insecticidal proteins, one of which is commonly known as Cry1Ab.

Following an assessment of 217 stream sites in Indiana, the paper's authors found dissolved Cry1Ab proteins from Bt corn present in stream water at nearly a quarter of the sites, including headwater streams. Eighty-six percent of the sampled sites contained corn leaves, husks, stalks, or cobs in their channels; at 13% of these sites corn byproducts contained detectable Cry1Ab proteins. The study was conducted six months after crop harvest, indicating that the insecticidal proteins in crop byproducts can persist in the landscape.

Using these data, U.S. Department of Agriculture land cover data, and GIS modeling, the authors found that all of the stream sites with detectable Cry1Ab insecticidal proteins were located within 500 meters of a corn field. Furthermore, given current agricultural land use patterns, 91% percent of the streams and rivers throughout Iowa, Illinois, and Indiana -- some 159,000 miles of waterways -- are also located within 500 meters of corn fields.

Rosi-Marshall comments, "Our research adds to the growing body of evidence that corn crop byproducts can be dispersed throughout a stream network, and that the compounds associated with genetically-modified crops, such as insecticidal proteins, can enter nearby water bodies."

After corn crops are harvested, a common agricultural practice is to leave discarded plant material on the fields. This "no-till" form of agriculture minimizes soil erosion, but it also sets the stage for corn byproducts to enter nearby stream channels.

Rosi-Marshall concludes, "The tight linkage between corn fields and streams warrants further research into how corn byproducts, including Cr1Ab insecticidal proteins, potentially impact non-target ecosystems, such as streams and wetlands." These corn byproducts may alter the health of freshwaters. Ultimately, streams that originate in the Corn Belt drain into the Mississippi River and the Great Lakes.

Other authors on the PNAS paper included first-author Dr. Jennifer L. Tank (University of Notre Dame) and Drs. Todd V. Royer (Indiana University), Matthew R. Whiles (Southern Illinois University), Natalie A. Griffiths (University of Notre Dame), Therese C. Frauendorf (University of Notre Dame), and David J. Treering (Loyola University Chicago).


Story Source:

The above story is based on materials provided by Cary Institute of Ecosystem Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jennifer L. Tank, Emma J. Rosi-Marshall, Todd V. Royer, Matt R. Whiles, Natalie A. Griffiths, Therese C. Frauendorf, and David J. Treering. Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. PNAS, September 27, 2010 DOI: 10.1073/pnas.1006925107

Cite This Page:

Cary Institute of Ecosystem Studies. "Insecticides from genetically modified corn found in adjacent streams." ScienceDaily. ScienceDaily, 14 October 2010. <www.sciencedaily.com/releases/2010/09/100927155324.htm>.
Cary Institute of Ecosystem Studies. (2010, October 14). Insecticides from genetically modified corn found in adjacent streams. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/09/100927155324.htm
Cary Institute of Ecosystem Studies. "Insecticides from genetically modified corn found in adjacent streams." ScienceDaily. www.sciencedaily.com/releases/2010/09/100927155324.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins