Featured Research

from universities, journals, and other organizations

How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip

Date:
October 17, 2010
Source:
Journal of Experimental Biology
Summary:
Geckos have amazingly sticky feet. Their stickability comes from billions of dry microscopic hairs that coat the soles of their feet. However, when humidity increases, gecko feet stick even tighter to smooth surfaces, so how do they do it? Biologists have found that increased humidity softens the keratin that makes up the sticky foot-hairs, allowing them to deform and stick tighter to surfaces than hairs in dry conditions.

Gecko climbing the wall.
Credit: iStockphoto/Luis Carlos Torres

Human adhesives are famed for their fallibility. Gooey glues soon lose their grip, are easily contaminated and leave residues behind. But not gecko feet. Geckos can cling on repeatedly to the smoothest surfaces thanks to the self-cleaning microscopic spatula-shaped hairs (setae) that coat the soles of their feet.

Back in 2002, Kellar Autumn found that these dry hairs are in such intimate contact with surfaces that the reptiles 'glue' themselves on by van der Waals forces with no need for fluid adhesives. More recent studies had suggested that geckos might benefit from additional adhesion in humid environments through capillary action provided by microscopic droplets of water sandwiched between setae and the surface.

But Autumn wasn't so sure, so he and his lab at Lewis and Clark College and the University of Washington, USA, began testing gecko grip to find out how increasing humidity helps them hold tight Autumn publishes his team's discovery that humidity helps geckos grip tighter by softening the surface of their feet in The Journal of Experimental Biology.

Knowing that geckos replace lost setae when they moult, Autumn, his postdoc Jonathan Puthoff, and Matt Wilkinson collected patches of the 'sticky' hairs from gecko feet and attached them to a mechanical testing device, known as 'Robotoe', that reproduces the way the reptile drags its foot as it contacts a surface. Dragging the setae across two surfaces (one that repelled water and another that attracted water) at different velocities and in environments ranging from 10% to 80% humidity, the team tested whether microscopic water bridges formed in high humidity were helping the geckos hang on.

They reasoned that if the reptiles were using microscopic water bridges then the setae would bond more tightly to the surface that attracted water than the surface that repelled water. But when they measured the setae's adhesion and friction it was essentially the same on the two surfaces. And when the team compared the adhesion of setae that were moving too fast to form water bridges with that of slowly moving feet that could possibly form water bridges, there was no difference. The geckos were not supplementing their van der Waals attachment forces with capillary forces from water bridges. So how were they holding on tighter?

Graduate student Michael Prowse decided to take a closer look at the material properties of the reptile's feet. Knowing that setae are composed of keratin and keratin is softened by high humidity, Autumn wondered whether having softer setae could improve the reptiles' contact with surfaces and increase their van der Waals adhesion. The team decided to measure the setae's softness and how it changed as the humidity rose.

Repeatedly stretching and releasing a strip of setae at three different rates (0.5, 5 and 10 Hz) in environments ranging from 10% to 80% humidity, Autumn's team measured the force transmitted through the strip to calculate the strip's elastic modulus -- how much elastic energy is stored -- to see how it changed. As the humidity rose, the elastic modulus decreased by 75% and the strip of setae became softer. So the strip of setae became more deformable as the humidity rose, but could the increased softness explain the gecko's improved attachment under damp conditions?

Puthoff built a mathematical model to see if softer, more deformable, setae could explain the gecko's improved attachment at high humidity and found that it did. Not only did increased softness strengthen the contact between the setae and the surface but also it made it easier for the reptile to peel its foot off. So instead of improving gecko's attachment through microscopic bridges, higher humidity softens the setae that coat the reptile's feet to help them hold fast and peel free with ease.


Story Source:

The above story is based on materials provided by Journal of Experimental Biology. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. B. Puthoff, M. S. Prowse, M. Wilkinson, K. Autumn. Changes in materials properties explain the effects of humidity on gecko adhesion. Journal of Experimental Biology, 2010; 213 (21): 3699 DOI: 10.1242/jeb.047654

Cite This Page:

Journal of Experimental Biology. "How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip." ScienceDaily. ScienceDaily, 17 October 2010. <www.sciencedaily.com/releases/2010/10/101015091452.htm>.
Journal of Experimental Biology. (2010, October 17). How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/10/101015091452.htm
Journal of Experimental Biology. "How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip." ScienceDaily. www.sciencedaily.com/releases/2010/10/101015091452.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins