Featured Research

from universities, journals, and other organizations

How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip

Date:
October 17, 2010
Source:
Journal of Experimental Biology
Summary:
Geckos have amazingly sticky feet. Their stickability comes from billions of dry microscopic hairs that coat the soles of their feet. However, when humidity increases, gecko feet stick even tighter to smooth surfaces, so how do they do it? Biologists have found that increased humidity softens the keratin that makes up the sticky foot-hairs, allowing them to deform and stick tighter to surfaces than hairs in dry conditions.

Gecko climbing the wall.
Credit: iStockphoto/Luis Carlos Torres

Human adhesives are famed for their fallibility. Gooey glues soon lose their grip, are easily contaminated and leave residues behind. But not gecko feet. Geckos can cling on repeatedly to the smoothest surfaces thanks to the self-cleaning microscopic spatula-shaped hairs (setae) that coat the soles of their feet.

Related Articles


Back in 2002, Kellar Autumn found that these dry hairs are in such intimate contact with surfaces that the reptiles 'glue' themselves on by van der Waals forces with no need for fluid adhesives. More recent studies had suggested that geckos might benefit from additional adhesion in humid environments through capillary action provided by microscopic droplets of water sandwiched between setae and the surface.

But Autumn wasn't so sure, so he and his lab at Lewis and Clark College and the University of Washington, USA, began testing gecko grip to find out how increasing humidity helps them hold tight Autumn publishes his team's discovery that humidity helps geckos grip tighter by softening the surface of their feet in The Journal of Experimental Biology.

Knowing that geckos replace lost setae when they moult, Autumn, his postdoc Jonathan Puthoff, and Matt Wilkinson collected patches of the 'sticky' hairs from gecko feet and attached them to a mechanical testing device, known as 'Robotoe', that reproduces the way the reptile drags its foot as it contacts a surface. Dragging the setae across two surfaces (one that repelled water and another that attracted water) at different velocities and in environments ranging from 10% to 80% humidity, the team tested whether microscopic water bridges formed in high humidity were helping the geckos hang on.

They reasoned that if the reptiles were using microscopic water bridges then the setae would bond more tightly to the surface that attracted water than the surface that repelled water. But when they measured the setae's adhesion and friction it was essentially the same on the two surfaces. And when the team compared the adhesion of setae that were moving too fast to form water bridges with that of slowly moving feet that could possibly form water bridges, there was no difference. The geckos were not supplementing their van der Waals attachment forces with capillary forces from water bridges. So how were they holding on tighter?

Graduate student Michael Prowse decided to take a closer look at the material properties of the reptile's feet. Knowing that setae are composed of keratin and keratin is softened by high humidity, Autumn wondered whether having softer setae could improve the reptiles' contact with surfaces and increase their van der Waals adhesion. The team decided to measure the setae's softness and how it changed as the humidity rose.

Repeatedly stretching and releasing a strip of setae at three different rates (0.5, 5 and 10 Hz) in environments ranging from 10% to 80% humidity, Autumn's team measured the force transmitted through the strip to calculate the strip's elastic modulus -- how much elastic energy is stored -- to see how it changed. As the humidity rose, the elastic modulus decreased by 75% and the strip of setae became softer. So the strip of setae became more deformable as the humidity rose, but could the increased softness explain the gecko's improved attachment under damp conditions?

Puthoff built a mathematical model to see if softer, more deformable, setae could explain the gecko's improved attachment at high humidity and found that it did. Not only did increased softness strengthen the contact between the setae and the surface but also it made it easier for the reptile to peel its foot off. So instead of improving gecko's attachment through microscopic bridges, higher humidity softens the setae that coat the reptile's feet to help them hold fast and peel free with ease.


Story Source:

The above story is based on materials provided by Journal of Experimental Biology. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. B. Puthoff, M. S. Prowse, M. Wilkinson, K. Autumn. Changes in materials properties explain the effects of humidity on gecko adhesion. Journal of Experimental Biology, 2010; 213 (21): 3699 DOI: 10.1242/jeb.047654

Cite This Page:

Journal of Experimental Biology. "How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip." ScienceDaily. ScienceDaily, 17 October 2010. <www.sciencedaily.com/releases/2010/10/101015091452.htm>.
Journal of Experimental Biology. (2010, October 17). How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2010/10/101015091452.htm
Journal of Experimental Biology. "How humidity makes gecko feet stickier: Softens setae to tighten gecko's grip." ScienceDaily. www.sciencedaily.com/releases/2010/10/101015091452.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins