Featured Research

from universities, journals, and other organizations

Key molecules in multiple myeloma identified

Date:
October 26, 2010
Source:
Ohio State University Medical Center
Summary:
New research links three molecules to a critical tumor suppressor gene that is often turned off in multiple myeloma. The findings might offer a new strategy for treating this incurable disease and perhaps other blood cancers. The study suggests that re-activating the three molecules triggers expression of the P53 tumor suppressor gene. This slows the growth and leads to the death of myeloma cells and could provide a new strategy for treating the disease.

New research links three molecules to a critical tumor suppressor gene that is often turned off in multiple myeloma, a presently incurable cancer of the blood.

The findings might offer a new strategy for treating this disease and other blood cancers, according to researchers at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC -- James) who led the study.

The silenced molecules are called miR-192, miR-194 and miR-215. All of them are microRNAs, a large class of molecules that are master regulators of many important cell processes.

The study, published in the Oct. 19 issue of Cancer Cell, suggests that re-activating these three molecules triggers expression of the P53 tumor suppressor gene. This, in turn, slows the growth and leads to the death of myeloma cells and could provide a new strategy for treating the disease.

"These findings provide a rationale for the further exploration of these microRNAs as a treatment for multiple myeloma, which has few therapeutic options," says principal investigator Dr. Carlo Croce, professor and chair of Molecular Virology, Immunology and Medical Genetics, and director of the Human Cancer Genetics program at the OSUCCC -- James.

Multiple myeloma is a disorder of white blood cells called plasma cells. More than 20,100 Americans are expected to develop the disease this year and some 10,600 are expected to die from it. Myeloma begins as a benign condition called monoclonal gammopathy of undetermined significance (MGUS). Individuals with MGUS can live for many years without treatment. Then, for unknown reasons, this benign condition can evolve into multiple myeloma.

Studies investigating the molecular causes of the disease have shown a relationship between P53 and another gene called MDM2. They have also shown that myeloma cells often have healthy (i.e., unmutated) P53 genes but very little P53 protein. P53 protein levels are restored, however, when MDM2 expression is blocked.

The study by Croce and his collaborators, which examines the role of microRNA in regulating the P53 pathway in myeloma cells, shows the following:

  • Expression of miR-192, miR-194 and miR-215 in multiple myeloma cells slows their growth and causes their death by activating the P53 gene;
  • Multiple myeloma cells from patients show high MDM2 expression compared with MGUS cells and normal plasma cells;
  • Expression of the three microRNAs dramatically lowers MDM2 expression levels and significantly increases P53 levels;
  • Treating myeloma cells with the three microRNAs plus an MDM2 inhibitor caused a two-fold rise in P53 expression and a three-fold drop in MDM2 expression;
  • Treating a myeloma mouse model with the three microRNAs caused a 50 percent reduction in tumor size compared with controls; treating the mice with the microRNAs plus an MDM2 inhibitor brought a five-fold reduction in tumor size.
  • Expression of the three microRNAs reduced the ability of myeloma cells to migrate and metastasize.

Overall, Croce says, "our results provide the basis for developing a microRNA-based therapy for multiple myeloma."

Funding from the Kimmel Foundation helped support this research.

Other researchers involved in this study were Flavia Pichiorri, Sung-Suk Suh, Cristian Taccioli, Ramasamy Santhanam, Wenchao Zhou, Don M. Benson, Jr., Craig Hofmainster, Hansjuerg Alder, Michela Garofalo, Gianpiero Di Leva, Stefano Volinia, Huey-Jen Lin, Danilo Perrotti and Rami I. Aqeilan from Ohio State University; Alberto Rocci, University of Turin, Turin, Italy; Luciana De Luca, Referral Cancer Center of Basilicata-Crob, Rionero in Vulture, Italy; Michael Kuehl, Center for Cancer Research, National Cancer Institute, USA; and Antonio Palumbo, University of Turin, Turin, Italy.


Story Source:

The above story is based on materials provided by Ohio State University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University Medical Center. "Key molecules in multiple myeloma identified." ScienceDaily. ScienceDaily, 26 October 2010. <www.sciencedaily.com/releases/2010/10/101026121749.htm>.
Ohio State University Medical Center. (2010, October 26). Key molecules in multiple myeloma identified. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/10/101026121749.htm
Ohio State University Medical Center. "Key molecules in multiple myeloma identified." ScienceDaily. www.sciencedaily.com/releases/2010/10/101026121749.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins