Featured Research

from universities, journals, and other organizations

Algebraic model of of DNA hybridization developed to monitor cellular change

Date:
November 1, 2010
Source:
New York University
Summary:
Researchers have developed a novel algebraic model of DNA hybridization, a process central to most biotechnology devices that monitor changes in cell's gene expression or characterize a cell's genome.

Researchers at New York University's Courant Institute of Mathematical Sciences have developed a novel algebraic model of DNA "hybridization," a process central to most biotechnology devices that monitor changes in cell's gene expression or characterize a cell's genome.

Related Articles


Their work, which is described in the journal Physical Review E, provides an additional tool for understanding how biological systems function and could enhance methods and designs of technologies used in cancer and genetics research.

Biology researchers seek to measure cell activity, but the task is a challenging one because of its complexity -- a cell has so many facets, all taking place simultaneously, that it is difficult to measure the behavior of its individual parts. Genes that do not necessarily affect each other inside a cell can disturb each others' measurements in a biotechnology device.

To get around these obstacles, the NYU researchers focused on how a cell's most basic components are measured -- its DNA and RNA. Specifically, they used a cell's gene expressions as a "tagging system" to monitor cell behavior at its most fundamental level.

For this purpose, they focused on microarray technology in which researchers first gather data on the make-up of RNA molecules in two steps: RNA is first converted into cDNA, or "copy DNA," and then measured by hybridization.

However, the researchers' initial work involved not experiments, but, rather, the creation of mathematical models to predict "DNA-cDNA duplex formation." They developed an algebraic computation that allowed them to model arbitrary DNA-cDNA duplex formation, and, with it, measurements of cellular behavior. Specifically, they assigned to various chemical properties of DNA strands different algebraic values (e.g., "K," "X," "Y"). They then ran a series of computations that resulted in expressing how "matches" or "mismatches" among various strands of DNA can be characterized by the input algebraic variables. These computations could then be used directly to design the most accurate biotechnology for measuring cellular behavior.

To confirm the validity of these algebraic models, the researchers conducted laboratory experiments involving the hybridization of DNA sequences. These results largely confirmed those predicted by the mathematical models -- the DNA sequences in the laboratory matched up in most instances in ways the models forecast.

The study's co-authors were: Vera Cherepinsky, a former post-doctoral fellow at NYU's Courant Institute of Mathematical Sciences and currently in the Department of Mathematics and Computer Science at Fairfield University; Ghazala Hashmi of BioArray Solutions, Ltd.; and Bud Mishra, a professor of computer science and mathematics and a principal investigator in Courant Bioinformatics Group.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "Algebraic model of of DNA hybridization developed to monitor cellular change." ScienceDaily. ScienceDaily, 1 November 2010. <www.sciencedaily.com/releases/2010/11/101101151855.htm>.
New York University. (2010, November 1). Algebraic model of of DNA hybridization developed to monitor cellular change. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/11/101101151855.htm
New York University. "Algebraic model of of DNA hybridization developed to monitor cellular change." ScienceDaily. www.sciencedaily.com/releases/2010/11/101101151855.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
Indians Muck in for Cleaner Communities

Indians Muck in for Cleaner Communities

AFP (Nov. 22, 2014) India's government is urging all citizens to come together in a mass movement to clean the nation -- but will people heed the call? Duration: 02:39 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins