Featured Research

from universities, journals, and other organizations

Corn starch solution can help shape solid materials

Date:
November 4, 2010
Source:
New York University
Summary:
Researchers have developed a method to shape solid materials using a corn starch solution. The process offers a potential technique for material cutting and manufacturing processes.

NYU researchers have developed a method to shape solid materials using a corn starch solution. To do this, they submerged a motor-powered, plastic sphere through the cornstarch solution toward a containing wall made of clay, stopping just short of the wall. Using the force of the sphere to harden the cornstarch solution, the researchers were able to make indentations in the wall. In addition, they were able to do so with a degree of precision by taking into account speed, force, and geometry. The process offers a potential technique for material cutting and manufacturing processes.
Credit: Image courtesy of New York University

New York University researchers have developed a method to shape solid materials using a corn starch solution. The process, devised by researchers in NYU's Courant Institute of Mathematical Sciences and Department of Physics, offers a potential technique for material cutting and manufacturing processes.

Their work is described in the journal Physical Review Letters.

Manufacturers use a variety of methods for shaping solid materials, ranging from laser cutting to high-speed jets of water. While altering the shape of such materials, such as glass, metal, or stone, is relatively straightforward, doing so with precision often proves challenging.

With this in mind, the NYU researchers sought to create an alternative, but rudimentary, method to shape solid materials in a precise fashion. To do so, they considered a process involving a corn starch solution.

Similar solutions have proved valuable in creating body armor -- but for different reasons. The molecules in these fluids -- also called shear-thickening fluids -- are closely packed, but loosely arranged. Under most conditions, they flow like most liquids. However, when met with pressure from an object or other force, its particles interlock and the fluid acts like a solid. Body armor comprised of shear-thickening fluids, when met with bullets, become hard and deflect incoming projectiles.

The NYU researchers sought to apply these principles in a different manner. Instead of using the solution to deflect objects, they aimed to use it as part of a process to shape solid materials -- in this case, a wall of modeling clay.

To do this, they submerged a motor-powered, plastic sphere through the cornstarch solution toward a containing wall made of modeling clay, stopping just short of the wall. Using the force of the sphere to harden the cornstarch solution, the researchers were able to make indentations in the wall of modeling clay. In addition, they were able to do so with a degree of precision by taking into account speed, force, and geometry. By moving the sphere at fast speeds through the solution, they created large depressions in the clay; by slowing it down, they created smaller depressions.

The study's authors were: Bin Liu, a post-doctoral researcher in NYU's Department of Physics, Michael Shelley, a professor in NYU's Courant Institute of Mathematical Sciences; and Jun Zhang, a professor in NYU's Department of Physics and Courant Institute.

The research was supported by grants from the National Science Foundation and the Department of Energy.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bin Liu, Michael Shelley, Jun Zhang. Focused Force Transmission through an Aqueous Suspension of Granules. Physical Review Letters, 2010; 105 (18): 188301 DOI: 10.1103/PhysRevLett.105.188301

Cite This Page:

New York University. "Corn starch solution can help shape solid materials." ScienceDaily. ScienceDaily, 4 November 2010. <www.sciencedaily.com/releases/2010/11/101104101701.htm>.
New York University. (2010, November 4). Corn starch solution can help shape solid materials. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2010/11/101104101701.htm
New York University. "Corn starch solution can help shape solid materials." ScienceDaily. www.sciencedaily.com/releases/2010/11/101104101701.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins