Featured Research

from universities, journals, and other organizations

Predictive power of dairy cattle methane models insufficient to provide sound environmental advice, study finds

Date:
November 5, 2010
Source:
Wageningen University and Research Centre
Summary:
Researchers have shown that current equations to predict methane production of cows are inaccurate. Sound mitigation options to reduce greenhouse gas emissions of dairy farms require a significant improvement of current methane equations, according to the study.

Canadian and Dutch researchers have shown that current equations to predict methane production of cows are inaccurate.
Credit: iStockphoto

Canadian and Dutch researchers have shown that current equations to predict methane production of cows are inaccurate. Sound mitigation options to reduce greenhouse gas emissions of dairy farms require a significant improvement of current methane equations, according to a study of the Dutch-Canadian team in the journal Global Change Biology.

Related Articles


The researchers, from University of Guelph and University of Manitoba (Canada) and Wageningen University & Research centre (the Netherlands), compared the observed methane production of cows with that predicted by nine different methane equations that are applied in whole farm greenhouse gas models. "The prediction accuracy of these equations is small, and the equations are not suitable to quantify methane production of cows," says Dr Jan Dijkstra, senior researcher worker at Wageningen University and adjunct professor at University of Guelph. "The predictive power of methane equations will have to be markedly improved if such whole farm models are used for sound decisions by governments to reduce environmental impact of dairying."

On a global basis, according to the FAO livestock is responsible for some 18% of all greenhouse gases emitted. Methane is the most important greenhouse gas on a dairy farm.The FAO estimates that about 52% of all greenhouse gases from the dairy sector is in the form of methane. Several whole-farm models are available that predict the total amount of greenhouse gases (the sum of CO2, CH4 en N2O) of dairy farms. Such whole-farm models are applied to make an inventory of total greenhouse gas emission on farm, and to estimate the effect of management changes (changes in breeding, nutrition, etc.) on greenhouse gas emissions. Methane is the single most important element in such estimates. Methane is 25 times more potent than CO2. Hence, the accuracy of estimation of total greenhouse gas emissions of whole-farm models largely depends on the accuracy of the prediction of methane emitted per cow.

The research team compiled a large dataset of actual observations on methane emissions of dairy cattle. The observations were largely derived from respiration chamber experiments, in which methane produced in the gut of the cow is accurately determined. These observations were used to evaluate the predictive power of equations to predict methane production.

The prediction accuracy of all equations was low. The equations hardly account for the effect of dietary composition on enteric methane production. Most equations do not use any dietary information at all, but estimate methane production based on feed intake or milk production. For example, the widely used IPCC (Intergovernmental Panel on Climate Change) equation that predicts methane production based on energy intake of the cow, cannot distinguish the effect of a higher energy intake on methane due to a rise in feed intake level, from that due to a rise in dietary fat content at the same feed intake level. However, a higher feed intake will increase methane production, whereas a rise in dietary fat content will decrease methane production.

From the analysis, it also appears that the variation in predicted methane production is far smaller that the variation in actually observed methane production. Consequently, the methane equations do not fully represent the range of effects of dietary changes on enteric methane production of cows.

The research team concluded that the low prediction accuracy and poor prediction of variation in observed values may introduce substantial error into inventories of GHG emissions and lead to incorrect mitigation recommendations. For sound inventories and mitigation recommendations, much better methane predictions are required. At present, the researchers are actively developing more detailed and accurate models that predict methane production, based on the fermentation processes in the gastro-intestinal tract of cows.


Story Source:

The above story is based on materials provided by Wageningen University and Research Centre. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. L. Ellis, A. Bannink, J. France, E. Kebreab, J. Dijkstra. Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Global Change Biology, 2010; DOI: 10.1111/j.1365-2486.2010.02188.x

Cite This Page:

Wageningen University and Research Centre. "Predictive power of dairy cattle methane models insufficient to provide sound environmental advice, study finds." ScienceDaily. ScienceDaily, 5 November 2010. <www.sciencedaily.com/releases/2010/11/101104194005.htm>.
Wageningen University and Research Centre. (2010, November 5). Predictive power of dairy cattle methane models insufficient to provide sound environmental advice, study finds. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2010/11/101104194005.htm
Wageningen University and Research Centre. "Predictive power of dairy cattle methane models insufficient to provide sound environmental advice, study finds." ScienceDaily. www.sciencedaily.com/releases/2010/11/101104194005.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Raw: Buffalo Residents Digging Out, Helping out

Raw: Buffalo Residents Digging Out, Helping out

AP (Nov. 22, 2014) Hundreds of volunteers joined a 'shovel brigade' in Buffalo, New York on Saturday, as the city was living up to its nickname, "The City of Good Neighbors." Video provided by AP
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins