Featured Research

from universities, journals, and other organizations

Biochemistry of how plants resist insect attack determined

Date:
November 15, 2010
Source:
Virginia Tech
Summary:
Many plants, including crops, release volatiles in response to insect attack. The chemical compounds can be a defense or can be an aromatic call for help to attract enemies of the attacking insect. Researchers have now discovered how plants produce the defensive compounds.

Many plants, including crops, release volatiles in response to insect attack. The chemical compounds can be a defense or can be an aromatic call for help to attract enemies of the attacking insect. Researchers from Virginia Tech, Michigan State University, and Georg-August-University Gφttingen have discovered how plants produce the defensive compounds.

Related Articles


The research is reported this week in the online early edition of the Proceedings of the National Academy of Sciences. The article is by Sungbeom Lee, postdoctoral associate in biological sciences; Somayesadat Badieyan, Ph.D. student in biological systems engineering; and David R. Bevan, associate professor of biochemistry, all at Virginia Tech; Marco Herde, postdoctoral associate with the Michigan State University, Department of Biochemistry and Molecular Biology; Christiane Gatz, professor and head of the Albrecht-von-Haller-Institute for Plant Sciences at Georg-August-University Gφttingen, Germany, and Dorothea Tholl, assistant professor of biological sciences at Virginia Tech.

To gain detailed insight into volatile defense metabolism and its regulation in plant tissues, the researchers focused on the formation of two common volatile compounds, or homoterpenes -- DMNT (4,8-dimethylnona-1,3,7-triene) and TMTT (4,8,12-trimethyltrideca-1,3,7,11-tetraene). They discovered that formation of both compounds is initiated by the same P450 enzyme -- belonging to a family of enzymes that initiates oxidation of organic compounds in most plants, animals, and bacteria. In plants, the enzyme is specifically activated by insect attack.

" We are excited to finally have elucidated the biosynthesis of these common plant volatiles. The discovered P450 protein was a long-missing enzymatic link in the formation of homoterpenes," said Tholl.

Lee and colleagues created a model using mammalian forms of P450 to study the catalytic specificity of the plant enzyme in greater detail. "The approach supports future efforts to fully understand and optimize the enzymatic reaction," said Tholl. "A primary aim of the study is to engineer the discovered enzymatic pathway in important crop plants to improve their natural pest controls."

"This work illustrates the power of combining computational model-building with experimental methods in elucidating important biochemical activities," said Bevan. "Our detailed understanding of the biology underlying the production of these plant volatiles will now enable us to apply our new knowledge in agriculture in novel ways."

"We now are in the position to use this and previously identified genes of the biosynthetic pathway as tools to change volatile profiles in plants," said Tholl. "This approach can help us to design insect-induced volatile mixtures that are especially attractive to natural enemies used in biological pest control."

Another intriguing aspect of homoterpene volatiles is that they can elicit defensive responses in unattacked neighboring plants. "It may therefore be possible to exploit these signaling activities by priming defenses in crop fields prior to insect attack via specific transgenic 'emitter' plants," Tholl said.

The research was supported by a U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service National Research Initiative Grant.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sungbeom Lee, Somayesadat Badieyan, David R. Bevan, Marco Herde, Christiane Gatz, and Dorothea Tholl. Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. PNAS, November 18, 2010 DOI: 10.1073/pnas.1009975107

Cite This Page:

Virginia Tech. "Biochemistry of how plants resist insect attack determined." ScienceDaily. ScienceDaily, 15 November 2010. <www.sciencedaily.com/releases/2010/11/101115161156.htm>.
Virginia Tech. (2010, November 15). Biochemistry of how plants resist insect attack determined. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/11/101115161156.htm
Virginia Tech. "Biochemistry of how plants resist insect attack determined." ScienceDaily. www.sciencedaily.com/releases/2010/11/101115161156.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins