Featured Research

from universities, journals, and other organizations

Biochemistry of how plants resist insect attack determined

Date:
November 15, 2010
Source:
Virginia Tech
Summary:
Many plants, including crops, release volatiles in response to insect attack. The chemical compounds can be a defense or can be an aromatic call for help to attract enemies of the attacking insect. Researchers have now discovered how plants produce the defensive compounds.

Many plants, including crops, release volatiles in response to insect attack. The chemical compounds can be a defense or can be an aromatic call for help to attract enemies of the attacking insect. Researchers from Virginia Tech, Michigan State University, and Georg-August-University Gφttingen have discovered how plants produce the defensive compounds.

The research is reported this week in the online early edition of the Proceedings of the National Academy of Sciences. The article is by Sungbeom Lee, postdoctoral associate in biological sciences; Somayesadat Badieyan, Ph.D. student in biological systems engineering; and David R. Bevan, associate professor of biochemistry, all at Virginia Tech; Marco Herde, postdoctoral associate with the Michigan State University, Department of Biochemistry and Molecular Biology; Christiane Gatz, professor and head of the Albrecht-von-Haller-Institute for Plant Sciences at Georg-August-University Gφttingen, Germany, and Dorothea Tholl, assistant professor of biological sciences at Virginia Tech.

To gain detailed insight into volatile defense metabolism and its regulation in plant tissues, the researchers focused on the formation of two common volatile compounds, or homoterpenes -- DMNT (4,8-dimethylnona-1,3,7-triene) and TMTT (4,8,12-trimethyltrideca-1,3,7,11-tetraene). They discovered that formation of both compounds is initiated by the same P450 enzyme -- belonging to a family of enzymes that initiates oxidation of organic compounds in most plants, animals, and bacteria. In plants, the enzyme is specifically activated by insect attack.

" We are excited to finally have elucidated the biosynthesis of these common plant volatiles. The discovered P450 protein was a long-missing enzymatic link in the formation of homoterpenes," said Tholl.

Lee and colleagues created a model using mammalian forms of P450 to study the catalytic specificity of the plant enzyme in greater detail. "The approach supports future efforts to fully understand and optimize the enzymatic reaction," said Tholl. "A primary aim of the study is to engineer the discovered enzymatic pathway in important crop plants to improve their natural pest controls."

"This work illustrates the power of combining computational model-building with experimental methods in elucidating important biochemical activities," said Bevan. "Our detailed understanding of the biology underlying the production of these plant volatiles will now enable us to apply our new knowledge in agriculture in novel ways."

"We now are in the position to use this and previously identified genes of the biosynthetic pathway as tools to change volatile profiles in plants," said Tholl. "This approach can help us to design insect-induced volatile mixtures that are especially attractive to natural enemies used in biological pest control."

Another intriguing aspect of homoterpene volatiles is that they can elicit defensive responses in unattacked neighboring plants. "It may therefore be possible to exploit these signaling activities by priming defenses in crop fields prior to insect attack via specific transgenic 'emitter' plants," Tholl said.

The research was supported by a U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service National Research Initiative Grant.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sungbeom Lee, Somayesadat Badieyan, David R. Bevan, Marco Herde, Christiane Gatz, and Dorothea Tholl. Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. PNAS, November 18, 2010 DOI: 10.1073/pnas.1009975107

Cite This Page:

Virginia Tech. "Biochemistry of how plants resist insect attack determined." ScienceDaily. ScienceDaily, 15 November 2010. <www.sciencedaily.com/releases/2010/11/101115161156.htm>.
Virginia Tech. (2010, November 15). Biochemistry of how plants resist insect attack determined. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/11/101115161156.htm
Virginia Tech. "Biochemistry of how plants resist insect attack determined." ScienceDaily. www.sciencedaily.com/releases/2010/11/101115161156.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) — Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) — An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins