Featured Research

from universities, journals, and other organizations

Optimizing large wind farms

Date:
November 25, 2010
Source:
American Institute of Physics
Summary:
Researchers have developed a model to calculate the optimal spacing of wind turbines for the very large wind farms of the future.

Instantaneous streamwise velocity magnitudes on three perpendicular planes across a wind turbine array boundary layer, obtained from computer simulation. The dark semicircles denote the positions of the wind turbines and the blue regions behind them denote the meandering wakes. Such simulations have been used to develop a model for wind farm roughness length, from which optimal wind turbine spacings can be deduced. Optimal spacing is found to be about 15 diameters.
Credit: Johan Meyers at Katholieke Universiteit, Leuven (Belgium), and Charles Meneveau, Johns Hopkins University, Baltimore, MD (USA).

Wind farms around the world are large and getting larger. Arranging thousands of wind turbines across many miles of land requires new tools that can balance cost and efficiency to provide the most energy for the buck.

Charles Meneveau, who studies fluid dynamics at Johns Hopkins University, and his collaborator Johan Meyers from Leuven University in Belgium, have developed a model to calculate the optimal spacing of turbines for the very large wind farms of the future. Theyl presented their work November 23 at the American Physical Society Division of Fluid Dynamics (DFD) meeting in Long Beach, CA.

"The optimal spacing between individual wind turbines is actually a little farther apart than what people use these days," said Meneveau.

The blades of a turbine distort wind, creating eddies of turbulence that can affect other wind turbines farther downwind. Most previous studies have used computer models to calculate the wake effect of one individual turbine on another.

Starting with large-scale computer simulations and small-scale experiments in a wind tunnel, Meneveau's model considers the cumulative effects of hundreds or thousands of turbines interacting with the atmosphere.

"There's relatively little knowledge about what happens when you put lots of these together," said Meneveau.

The energy a large wind farm can produce, he and his coworkers discovered, depends less on horizontal winds and more on entraining strong winds from higher in the atmosphere. A 100-meter turbine in a large wind farm must harness energy drawn from the atmospheric boundary layer thousands of feet up.

In the right configuration, lots of turbines essentially change the roughness of the land -- much in the same way that trees do -- and create turbulence. Turbulence, in this case, isn't a bad thing. It mixes the air and helps to pull down kinetic energy from above.

Using as example 5 megawatt-rated machines and some reasonable economic figures, Meneveau calculates that the optimal spacing between turbines should be about 15 rotor diameters instead of the currently prevalent figure of 7 rotor diameters.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Optimizing large wind farms." ScienceDaily. ScienceDaily, 25 November 2010. <www.sciencedaily.com/releases/2010/11/101123174322.htm>.
American Institute of Physics. (2010, November 25). Optimizing large wind farms. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/11/101123174322.htm
American Institute of Physics. "Optimizing large wind farms." ScienceDaily. www.sciencedaily.com/releases/2010/11/101123174322.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins