Featured Research

from universities, journals, and other organizations

How people perceive sour flavors: Proton current drives action potentials in taste cells

Date:
November 25, 2010
Source:
University of Southern California
Summary:
Tart cranberry sauce is part of Thanksgiving, and a new study reveals a surprising mechanism for how we perceive sourness: a proton current in taste cells.

The research of USC College professor Emily Liman, left, and neuroscience Ph.D. student Rui B. Chang was recently published in the Proceedings of the National Academy of Sciences.
Credit: Photo by Dietmar Quistorf

This Thanksgiving, when the tartness of cranberry sauce smacks your tongue, consider the power of sour. Neurobiology researchers at the University of Southern California have made a surprising discovery about how some cells respond to sour tastes.

Of the five taste sensations -- sweet, bitter, sour, salty and umami -- sour is arguably the strongest yet the least understood. Sour is the sensation evoked by substances that are acidic, such as lemons and pickles. The more acidic the substance, the more sour the taste.

Acids release protons. How protons activate the taste system had not been understood. The USC team expected to find protons from acids binding to the outside of the cell and opening a pore in the membrane that would allow sodium to enter the cell. Sodium's entry would send an electrical response to the brain, announcing the sensation that we perceive as sour.

Instead, the researchers found that the protons were entering the cell and causing the electrical response directly.

The finding is to be published in the Proceedings of the National Academy of Sciences (PNAS).

"In order to understand how sour works, we need to understand how the cells that are responsive to sour detect the protons," said senior author Emily Liman, associate professor of neurobiology in the USC College of Letters, Arts and Sciences.

"In the past, it's been difficult to address this question because the taste buds on the tongue are heterogeneous. Among the 50 or so cells in each taste bud there are cells responding to each of the five tastes. But if we want to know how sour works, we need to measure activity specifically in the sour sensitive taste cells and determine what is special about them that allows them to respond to protons."

Liman and her team bred genetically modified mice and marked their sour cells with a yellow florescent protein. Then they recorded the electrical responses from just those cells to protons.

The ability to sense protons with a mechanism that does not rely on sodium has important implications for how different tastes interact, Liman speculates.

"This mechanism is very appropriate for the taste system because we can eat something that has a lot of protons and not much sodium or other ions, and the taste system will still be able to detect sour," she said. "It makes sense that nature would have built a taste cell like this, so as not to confuse salty with sour."

In the future, the research may have practical applications for cooks and the food industry.

"We're at the early stages of identifying the molecules that contribute to sour taste," Liman said. "Once we've understood the nature of the molecules that sense sour, we can start thinking about how they might be modified and how that might change the way things taste. We may also find that the number or function of these molecules changes during the course of development or during aging."

Liman's co-authors were USC neuroscience Ph.D. student Rui B. Chang and USC College researcher Hang Waters, now at the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Southern California. The original article was written by Pamela J. Johnson. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rui B. Chang, Hang Waters, Emily R. Liman. A proton current drives action potentials in genetically identified sour taste cells. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1013664107

Cite This Page:

University of Southern California. "How people perceive sour flavors: Proton current drives action potentials in taste cells." ScienceDaily. ScienceDaily, 25 November 2010. <www.sciencedaily.com/releases/2010/11/101124114709.htm>.
University of Southern California. (2010, November 25). How people perceive sour flavors: Proton current drives action potentials in taste cells. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2010/11/101124114709.htm
University of Southern California. "How people perceive sour flavors: Proton current drives action potentials in taste cells." ScienceDaily. www.sciencedaily.com/releases/2010/11/101124114709.htm (accessed October 2, 2014).

Share This



More Plants & Animals News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dolphins and Turtles Under Threat in Pakistan

Dolphins and Turtles Under Threat in Pakistan

AFP (Oct. 2, 2014) — The turtles and Dolphins of Pakistan's Indus river - both protected by law - are in a fight for their survival as man's activities threatens their futures. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
'Harvest Break' Endures in Maine Potato Fields

'Harvest Break' Endures in Maine Potato Fields

AP (Oct. 2, 2014) — Educators and farmers are clinging to a tradition aimed at giving farmers much-needed help in getting potatoes out of the fields and into storage before the ground freezes in the nation's northeast corner. (Oct. 2) Video provided by AP
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins