Featured Research

from universities, journals, and other organizations

Bioengineers discover how particles self-assemble in flowing fluids

Date:
December 14, 2010
Source:
University of California - Los Angeles
Summary:
Bioengineers have been exploring a unique phenomenon whereby randomly dispersed microparticles will self-assemble into a highly organized structure during flow through micro-scale channels.

A simple microfluidic "filter" structure converts microparticle streams with smaller interparticle spacings to trains of larger spacing. The channel width is about half the diameter of a human hair at the expansion.
Credit: Image courtesy of University of California - Los Angeles

From atomic crystals to spiral galaxies, self-assembly is ubiquitous in nature. In biological processes, self-assembly at the molecular level is particularly prevalent.

Related Articles


Phospholipids, for example, will self-assemble into a bilayer to form a cell membrane, and actin, a protein that supports and shapes a cell's structure, continuously self-assembles and disassembles during cell movement.

Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science have been exploring a unique phenomenon whereby randomly dispersed microparticles self-assemble into a highly organized structure as they flow through microscale channels.

This self-assembly behavior was unexpected, the researchers said, for such a simple system containing only particles, fluid and a conduit through which these elements flow. The particles formed lattice-like structures due to a unique combination of hydrodynamic interactions.

The research, published online December 13 in the journal Proceedings of the National Academy of Sciences, was led by UCLA postdoctoral scholar Wonhee Lee and UCLA assistant professor of bioengineering Dino Di Carlo.

The research team discovered the mechanism that leads to this self-assembly behavior through a series of careful experiments and numerical simulations. They found that continuous disturbance of the fluid induced by each flowing and rotating particle drives neighboring particles away, while migration of particles to localized streams due to the momentum of the fluid acts to stabilize the spacing between particles at a finite distance. In essence, the combination of repulsion and localization leads to an organized structure.

Once they understood the mechanism, the team developed microchannels that allowed for "tuning" of the spatial frequency of particles within an organized particle train. They found that by simply adding short regions of expanded channel width, the particles could be induced to self-assemble into different structures in a controllable and potentially programmable way.

"Programmable control of flowing microscale particles may be important in opening up new capabilities in biomedicine, materials synthesis and computation, similar to how improved control of flowing electrons has enabled a revolution in computing and communication," Di Carlo said.

For example, controlling the positions of microscale bioparticles, such as cells in flowing channels, is important for the operation of blood analysis and counting diagnostic systems. In addition, improving the uniformity of cell concentrations entering the microscale volume of a print head can enable burgeoning fields such as "tissue printing," in which single cells in a polymer ink are sequentially positioned to form a functional tissue architecture, such as the cylindrical lumen of a blood vessel.

More complete control of lattices of particles may also allow tunable manufacturing of optical or acoustic metamaterials that interact uniquely with light and sound waves based on the arrangement of the embedded particles, the researchers said.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wonhee Lee, Hamed Amini, Howard A. Stone and Dino Di Carlo. Dynamic self-assembly and control of microfluidic particle crystals. PNAS, December 13, 2010 DOI: 10.1073/pnas.1010297107

Cite This Page:

University of California - Los Angeles. "Bioengineers discover how particles self-assemble in flowing fluids." ScienceDaily. ScienceDaily, 14 December 2010. <www.sciencedaily.com/releases/2010/12/101213163841.htm>.
University of California - Los Angeles. (2010, December 14). Bioengineers discover how particles self-assemble in flowing fluids. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/12/101213163841.htm
University of California - Los Angeles. "Bioengineers discover how particles self-assemble in flowing fluids." ScienceDaily. www.sciencedaily.com/releases/2010/12/101213163841.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins