Featured Research

from universities, journals, and other organizations

Tiny 3-D images shed light on origin of Earth's core

Date:
December 17, 2010
Source:
Stanford University
Summary:
A new method of capturing detailed, three-dimensional images of minute samples of material under extreme pressures is shedding light how Earth's interior evolved. Early results suggest that the early Earth did not have to be entirely molten to separate into the rocky crust and iron-rich core it has today.

Silicate material mixed with iron shown at low pressure, with iron forming small, discrete spheres (lighter-colored areas) inside the silicate.
Credit: Illustration courtesy of Wendy Mao

A new method of capturing detailed, three-dimensional images of minute samples of material under extreme pressures is shedding light on the evolution of the Earth's interior. Early results suggest that the early Earth did not have to be entirely molten to separate into the rocky crust and iron-rich core it has today. Researchers at Stanford University and SLAC National Accelerator Laboratory are leading the group pioneering the technique, which could lead to a wide range of new experiments.

To answer the big questions, it often helps to look at the smallest details.That is the approach Stanford mineral physicist Wendy Mao is taking to understanding a major event in Earth's inner history. Using a new technique to scrutinize how minute amounts of iron and silicate minerals interact at ultra-high pressures and temperatures, she is gaining insight into the biggest transformation Earth has ever undergone -- the separation of its rocky mantle from its iron-rich core approximately 4.5 billion years ago.

The technique, called high-pressure nanoscale X-ray computed tomography, is being developed at SLAC National Accelerator Laboratory. With it, Mao is getting unprecedented detail -- in three-dimensional images -- of changes in the texture and shape of molten iron and solid silicate minerals as they respond to the same intense pressures and temperatures found deep in the Earth.

Mao will present the results of the first few experiments with the technique at the annual meeting of the American Geophysical Union in San Francisco on Dec. 16.

Tomography refers to the process that creates a three-dimensional image by combining a series of two-dimensional images, or cross-sections, through an object. A computer program interpolates between the images to flesh out a recreation of the object.

Researchers at SLAC have developed a way to combine a diamond anvil cell, which compresses tiny samples between the tips of two diamonds, with nanoscale X-ray computed tomography to capture images of material at high pressure. The pressures deep in the Earth are so high -- millions of times atmospheric pressure -- that only diamonds can exert the needed pressure without breaking under the force.

At present, the SLAC researchers and their collaborators from HPSync, the High Pressure Synergetic Consortium at the Advanced Photon Source at Argonne National Laboratory, are the only group using this technique.

"It is pretty exciting, being able to measure the interactions of iron and silicate materials at very high pressures and temperatures, which you could not do before," said Mao, an assistant professor of geological and environmental sciences and of photon science. "No one has ever imaged these sorts of changes at these very high pressures."

It is generally agreed that the initially homogenous ball of material that was the very early Earth had to be very hot in order to differentiate into the layered sphere we live on today. Since the crust and the layer underneath it, the mantle, are silicate-rich, rocky layers, while the core is iron-rich, it's clear that silicate and iron went in different directions at some point. But how they separated out and squeezed past each other is not clear. Silicate minerals, which contain silica, make up about 90 percent of the crust of the Earth.

If the planet got hot enough to melt both elements, it would have been easy enough for the difference in density to send iron to the bottom and silicates to the top.

If the temperature was not hot enough to melt silicates, it has been proposed that molten iron might have been able to move along the boundaries between grains of the solid silicate minerals.

"To prove that, though, you need to know whether the molten iron would tend to form small spheres or whether it would form channels," Mao said. "That would depend on the surface energy between the iron and silicate."

Previous experimental work has shown that at low pressure, iron forms isolated spheres, similar to the way water beads up on a waxed surface, Mao said, and spheres could not percolate through solid silicate material.

Mao said the results of her first high-pressure experiments using the tomography apparatus suggest that at high pressure, since the silicate transforms into a different structure, the interaction between the iron and silicate could be different than at low pressure.

"At high pressure, the iron takes a more elongate, platelet-like form," she said. That means the iron would spread out on the surface of the silicate minerals, connecting to form channels instead of remaining in isolated spheres.

"So it looks like you could get some percolation of iron at high pressure," Mao said. "If iron could do that, that would tell you something really significant about the thermal history of the Earth."

But she cautioned that she only has data from the initial experiments.

"We have some interesting results, but it is the kind of measurement that you need to repeat a couple times to make sure," Mao said.


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by Louis Bergeron. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University. "Tiny 3-D images shed light on origin of Earth's core." ScienceDaily. ScienceDaily, 17 December 2010. <www.sciencedaily.com/releases/2010/12/101216131114.htm>.
Stanford University. (2010, December 17). Tiny 3-D images shed light on origin of Earth's core. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/12/101216131114.htm
Stanford University. "Tiny 3-D images shed light on origin of Earth's core." ScienceDaily. www.sciencedaily.com/releases/2010/12/101216131114.htm (accessed September 17, 2014).

Share This



More Earth & Climate News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins