Featured Research

from universities, journals, and other organizations

Protein wields phosphate group to inhibit cancer metastasis; Tagging an enzyme with chemical also is crucial to bone cell formation

Date:
January 4, 2011
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
By sticking a chemical group to it at a specific site, a protein arrests an enzyme that may worsen and spread cancer, an international research team reports.

By sticking a chemical group to it at a specific site, a protein arrests an enzyme that may worsen and spread cancer, an international research team led by scientists at The University of Texas MD Anderson Cancer Center reports in the January issue of Nature Cell Biology.

In addition to highlighting a novel anti-cancer pathway, the team found that the same deactivation of the enzyme called EZH2 is necessary for the formation of bone-forming cells from the stem cells that make them and other tissues.

"EZH2 is overexpressed in aggressive solid tumors and tied to cancer progression and metastasis," said the paper's senior author, Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. "We have found that another protein, CDK1, deactivates EZH2."

The team's basic research findings provide a rationale for developing an EZH2 inhibitor or a drug that mimics the protein that deactivates it as new cancer drugs. "You have to understand the molecular details of cancer formation and progression to develop new therapies that improve treatment and prevention," Hung said.

In a series of experiments, the team demonstrated how CDK1 interferes with EZH2, reducing cell migration and invasion in breast cancer cell lines.

EZH2 silences gene expression by attaching a methyl group, which consists of one carbon and three hydrogen atoms, to a histone protein that is intertwined with DNA and other proteins to compose chromosomes. Genes suppressed by this methylation include tumor suppressors that would otherwise prevent cancer growth and spread.

The team showed that CDK1 short-circuits EZH2-mediated methylation by attaching a different chemical group consisting of one phosphate and three oxygen atoms to EZH2, a process called phosphorylation. And that phosphorylation has to occur at a specific amino acid on EZH2 to have this effect.

It's a matter of phosphorylation trumping methylation, Hung said. The phosphorylated version of EZH2 cannot methylate the target histone protein, so repressed genes are awakened.

Cancer cells with EZH2 that had a mutant version of the location where the phosphate group connects, preventing phosphorylation, had double the cell migration and invasion of cancer cells with the regular, unmutated version of EZH2.

Same process vital to bone formation

EZH2 plays an important normal role in a variety of biological processes. "EZH2 is crucial to embryonic development because it turns genes off and on to guide the differentiation of embryonic stem cells into tissues and organs," Hung said. Embryonic stem cells can turn into any type of cell.

In a separate set of experiments, the researchers demonstrated that phosphorylation of EZH2 is necessary to the production of bone cells (osteoblasts).

Mesenchymal stem cells can differentiate into bone, cartilage or fat cells. The team showed only those cells with EZH2 phosphorylated by CDK1 differentiated into bone cells. Genes crucial to bone formation were silenced by methlyation but awakened when CDK1 altered EZH2.

A genomewide screen to identify genes targeted by EZH2 in mesenchymal stem cells was conducted before and after the cells differentiated into bone cells. Before, more than 4,000 genes were found to bind to EZH2. After differentiation to bone cells, 30 or fewer genes bound to the protein.

"This and other recently reported studies open up drug development possibilities by either inhibiting the methyltransferase activity of EZH2 or regulating phosphorylation to indirectly regulate EZH2's activity," Hung said.

"This study also suggests a possible way to induce mesenchymal stem cell differentiation into bone cells, which may have long-term implications for regenerative medicine for bone disease," Hung said.

This project was a result of the MD Anderson/China Medical University Hospital Sister institution collaboration.

Research was supported by grants from the National Cancer Institute, Kadoorie Charitable Foundations, National Breast Cancer Foundation, Inc., and the MD Anderson/China Medical University and Hospital Sister Foundation Funds and Cancer Center of Research Excellence from Taiwan.

Co-authors with Hung and first author Yongkun Wei, Ph.D., are Jingyu Lang, Ph.D., Bin Shi, Ph.D., Cheng-Chieh Yang, D.D.S., Ph.D., and Jer-Yen Yang Ph.D., all of MD Anderson's Department of Molecular and Cellular Biology; Ya-Huey Chen, Ph.D., Long-Yuan Li, Ph.D., and Chun-Yi Lin, all of Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan; Su-Peng Yeh, M.D., Division of Hematology and Oncology, China Medical University and Hospital, and Chien-Chen Lai, Ph.D., Graduate Institute of Chinese Medical Science, China Medical Universiy and Hospital and the Institute of Molecular Biology, National Chung Hsing University, Taiwan. Hung also is affiliated with China Medical University and Hospital and with The University of Texas Graduate School of Biomedical Sciences at Houston.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yongkun Wei, Ya-Huey Chen, Long-Yuan Li, Jingyu Lang, Su-Peng Yeh, Bin Shi, Cheng-Chieh Yang, Jer-Yen Yang, Chun-Yi Lin, Chien-Chen Lai, Mien-Chie Hung. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nature Cell Biology, 2010; 13 (1): 87 DOI: 10.1038/ncb2139

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Protein wields phosphate group to inhibit cancer metastasis; Tagging an enzyme with chemical also is crucial to bone cell formation." ScienceDaily. ScienceDaily, 4 January 2011. <www.sciencedaily.com/releases/2011/01/110103134100.htm>.
University of Texas M. D. Anderson Cancer Center. (2011, January 4). Protein wields phosphate group to inhibit cancer metastasis; Tagging an enzyme with chemical also is crucial to bone cell formation. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/01/110103134100.htm
University of Texas M. D. Anderson Cancer Center. "Protein wields phosphate group to inhibit cancer metastasis; Tagging an enzyme with chemical also is crucial to bone cell formation." ScienceDaily. www.sciencedaily.com/releases/2011/01/110103134100.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins