Featured Research

from universities, journals, and other organizations

Stem cell discovery could lead to improved bone marrow transplants

Date:
January 7, 2011
Source:
University of California - Santa Cruz
Summary:
Researchers have identified a key molecule for establishing blood stem cells in their niche within the bone marrow. The findings may lead to improvements in the safety and efficiency of bone marrow transplants.

Researchers at the University of California, Santa Cruz, have identified a key molecule for establishing blood stem cells in their niche within the bone marrow. The findings, reported in the January issue of Cell Stem Cell, may lead to improvements in the safety and efficiency of bone marrow transplants.

Related Articles


Bone marrow transplants are a type of stem cell therapy used to treat cancers such as lymphoma and leukemia and other blood-related diseases. In a bone marrow transplant, the "active ingredients" are hematopoietic stem cells, which live in the bone marrow and give rise to all the different kinds of mature blood cells. The new study shows that hematopoietic stem cells use a molecule called Robo4 to anchor themselves in the bone marrow.

"Robo4 is a rare molecule that is found only in hematopoietic stem cells and in the endothelial cells of blood vessels," said Camilla Forsberg, an assistant professor of biomolecular engineering in the Baskin School of Engineering at UC Santa Cruz. After earlier work in her lab showed that Robo4 is specific for hematopoietic stem cells, Forsberg set out to discover how it functions.

The discovery that the cells need Robo4 to stay in the bone marrow has potential therapeutic implications. An increasingly common alternative to traditional bone marrow transplants (which require anesthesia for the bone marrow extraction) involves harvesting hematopoietic stem cells from the blood. Repeated injections of drugs are needed to get the stem cells to leave the bone marrow and enter the bloodstream so that they can be collected with a blood draw. A drug that blocks Robo4 could be a safer and more effective way to do this, Forsberg said.

"If we can get specific and efficient inhibition of Robo4, we might be able to mobilize the hematopoietic stem cells to the blood more efficiently," she said. "We're already working on that in the second phase of the project."

Robo4 acts as an adhesion molecule, interacting with other components of the bone marrow to bind the stem cells into their proper niche. Forsberg's lab is trying to find out what molecules bind to Robo4, which could lead to a better understanding of that niche. While other types of stem cells are routinely grown in petri dishes, hematopoietic stem cells are very difficult to grow in the lab. They seem to require the bone marrow environment to function properly, and Forsberg's research might enable researchers to recreate that environment in a petri dish.

Other molecules besides Robo4 are also known to be involved in guiding the localization of hematopoietic stem cells in the bone marrow. Forsberg's results indicate that one of these, called Cxcr4, acts together with Robo4 to retain hematopoietic stem cells in the bone marrow. But the two molecules appear to act through different molecular mechanisms. Inhibition of both molecules may be the best way to achieve efficient mobilization of hematopoietic stem cells, Forsberg said.

Stephanie Smith-Berdan, a research specialist in Forsberg's lab, is first author of the new paper. Coauthors include UCSC researchers Andrew Nguyen, Deena Hassanein, Matthew Zimmer, Fernando Ugarte, and Lindsay Hinck, professor of molecular, cell and developmental biology; Dean Li of the University of Utah; and Jesus Ciriza and Marcos Garcia-Ojeida of UC Merced. This work was funded by UCSC and the California Institute for Regenerative Medicine.


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. The original article was written by Tim Stephens. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephanie Smith-Berdan, Andrew Nguyen, Deena Hassanein, Matthew Zimmer, Fernando Ugarte, Jesϊs Ciriza, Dean Li, Marcos E. Garcνa-Ojeda, Lindsay Hinck, E. Camilla Forsberg. Robo4 Cooperates with Cxcr4 to Specify Hematopoietic Stem Cell Localization to Bone Marrow Niches. Cell Stem Cell, 2011; 8 (1): 72-83 DOI: 10.1016/j.stem.2010.11.030

Cite This Page:

University of California - Santa Cruz. "Stem cell discovery could lead to improved bone marrow transplants." ScienceDaily. ScienceDaily, 7 January 2011. <www.sciencedaily.com/releases/2011/01/110106144533.htm>.
University of California - Santa Cruz. (2011, January 7). Stem cell discovery could lead to improved bone marrow transplants. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/01/110106144533.htm
University of California - Santa Cruz. "Stem cell discovery could lead to improved bone marrow transplants." ScienceDaily. www.sciencedaily.com/releases/2011/01/110106144533.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins