Featured Research

from universities, journals, and other organizations

Extracting cellular 'engines' may aid in understanding mitochondrial diseases

Date:
January 10, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Medical researchers who crave a means of exploring the genetic culprits behind a host of neuromuscular disorders may have just had their wish granted by a research team that has performed surgery on single cells to extract and examine their mitochondria.

Extracting mitochondria from a human cell is a tricky process. NIST researchers recently developed techniques that can surgically remove these tiny cellular engines, potentially enabling new ways to explore the link between mitochondrial DNA and a host of diseases.
Credit: NIST

Medical researchers who crave a means of exploring the genetic culprits behind a host of neuromuscular disorders may have just had their wish granted by a team working at the National Institute of Standards and Technology (NIST), where scientists have performed surgery on single cells to extract and examine their mitochondria.

The scientists reached into these cells and extracted their "engines" -- the mitochondria that are in large part responsible for our metabolism. Many human cells contain hundreds of mitochondria, which were thought to be free-swimming organisms millions of years ago and which still possess their own DNA. Mutations in this mitochondrial DNA (mtDNA) are directly related to a large class of mitochondrial-based diseases, which have a range of symptoms that include early onset blindness, seizures, hearing loss, dementia, etc. In the general population, one out of every 200 people possesses a mtDNA mutation that may develop into a mitochondrial disease.

Investigating more deeply has been problematic, though, because the way mitochondria mix and spread their DNA within and among cells is poorly understood. "The trouble is that it's very difficult to extract single mitochondria from an individual cell," says NIST physicist Joseph Reiner. "For years, the best technique has been to break open a group of cells and collect the mitochondria from all of them in a kind of soup. As you might guess, it's hard to determine which mitochondria came from what cells -- yet that's what we need to know."

The research team, which also includes scientists from Gettysburg College, has potentially solved this problem by realizing that several devices and techniques can be used together to extract a single mitochondrion from a cell that possesses a genetic mutation. They employed a method previously used to extract single chromosomes from isolated rice cells where a laser pulse makes an incision in a cell's outer membrane. Another laser is used as a "tweezer" to isolate a mitochondrion, which then can be extracted by a tiny pipette whose tip is less than a micrometer wide.

This approach allowed the team to place a single mitochondrion into a small test tube, where they could explore the mitochondrion's genetic makeup by conventional means. The team found the mutation present throughout the entire cell was also found within individual mitochondria, a find suggesting that broad genetic research on mitochondrial disease may be possible at last.

"Getting an object as tiny as this from tweezer to test tube is not easy," says Koren Deckman, a biochemist from Gettysburg College. "But by building on more than a decade of work that has gone on at NIST and elsewhere, we now have a way to see the mitochondria we extract all the way through the transfer process, meaning we can be sure the sample came from a very specific cell. This could give medical scientists the inroad they need for understanding these diseases."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal References:

  1. Joseph E. Reiner, Rani B. Kishore, Barbara C. Levin, Thomas Albanetti, Nicholas Boire, Ashley Knipe, Kristian Helmerson, Koren Holland Deckman. Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria. PLoS ONE, 2010; 5 (12): e14359 DOI: 10.1371/journal.pone.0014359
  2. Haowei Wang, Xiaohui Liu, Yinmei Li, Bin Han, Liren Lou, Kangjun Wang. Isolation of a single rice chromosome by optical micromanipulation. Journal of Optics A: Pure and Applied Optics, 2004; 6 (1): 89 DOI: 10.1088/1464-4258/6/1/016

Cite This Page:

National Institute of Standards and Technology (NIST). "Extracting cellular 'engines' may aid in understanding mitochondrial diseases." ScienceDaily. ScienceDaily, 10 January 2011. <www.sciencedaily.com/releases/2011/01/110106145303.htm>.
National Institute of Standards and Technology (NIST). (2011, January 10). Extracting cellular 'engines' may aid in understanding mitochondrial diseases. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2011/01/110106145303.htm
National Institute of Standards and Technology (NIST). "Extracting cellular 'engines' may aid in understanding mitochondrial diseases." ScienceDaily. www.sciencedaily.com/releases/2011/01/110106145303.htm (accessed September 16, 2014).

Share This



More Plants & Animals News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins