Featured Research

from universities, journals, and other organizations

MicroRNAs could increase the risk of amputation in diabetics

Date:
January 12, 2011
Source:
University of Bristol
Summary:
New research has found one of the smallest entities in the human genome, micro-RNA, could increase the risk of limb amputation in diabetic patients who have poor blood flow.

New research has found one of the smallest entities in the human genome, micro-RNA, could increase the risk of limb amputation in diabetic patients who have poor blood flow.

Related Articles


The study by Dr Andrea Caporali and colleagues in Professor Costanza Emanueli's research group in the Regenerative Medicine Section of the School of Clinical Sciences at the University of Bristol was funded by the Medical Research Council and is published online in Circulation: Journal of the American Heart Association.

The research group have shown in an experimental cell study that conditions mimicking diabetes and a lack of blood supply to a tissue increased a particular miRNA (miRNA-503) and impaired the ability of endothelial cells, which line the interior surface of blood vessels. Micro-RNAs (miRNAs) are small sections of ribonucleic acid (RNA) that can inhibit many genes.

Alternatively, slowing down miRNA-503 improved the capability of endothelial cells to duplicate and form into networks of small blood vessels. The researchers showed that microRNA-503 reduces cell growth and prevents the formation of blood vessels by direct binding and inhibition of cyclin E1 and Cdc25 mRNA.

Costanza Emanueli, Professorial Research Fellow in Vascular Pathology & Regeneration, said: "Because each miRNA can regulate many genes, they represent an exciting new target to correct diseases that have complex underlying mechanisms, like diabetes, rather than trying to target one specific gene. Our study is the first to provide evidence for a role of miRNAs in diabetes-induced defects in reparative angiogenesis."

The team subsequently investigated miR-503 and target gene expression in muscular specimens from the amputated ischaemic legs of diabetic patients. As controls, calf biopsies of non-diabetic and non-ischemic patients undergoing saphenous vein stripping were used. In diabetic muscles, miR-503 expression was remarkably higher, and plasma miR-503 levels were also elevated in the diabetic subjects.

Finally, using mouse models of diabetes and limb ischaemia, the researchers found that inhibition of the miRNA-503 (using a "decoy miRNA") could restore-post-ischaemic blood flow recovery. The findings of this study highlight important clinical implications of miR-503 in diabetes-associated vascular complications.

In early diabetes, high blood glucose levels damage blood vessels leading to lack of blood flow (ischaemia). Such ischaemic complications are the leading cause of disease and death in diabetic patients. In limbs, lack of blood flow can result in non-healing ulcers and, in diabetic patients, the ischaemic disease follows an unalterable course and limb amputation is too often the eventual remedy.

Tissues can recover from lack of blood flow by new blood vessel growth (angiogenesis), which restores blood supply to the tissue (reperfusion). However, diabetes harms the restoration of the flow of blood to a previously ischemic tissue, by mechanisms that are not fully understood, and so a better understanding of the molecular mechanisms underpinning diabetes-associated vascular complications is urgently needed to improve therapeutic options.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Caporali, M. Meloni, C. Vollenkle, D. Bonci, G. B. Sala-Newby, R. Addis, G. Spinetti, S. Losa, R. Masson, A. H. Baker, R. Agami, C. le Sage, G. Condorelli, P. Madeddu, F. Martelli, C. Emanueli. Deregulation of microRNA-503 Contributes to Diabetes Mellitus-Induced Impairment of Endothelial Function and Reparative Angiogenesis After Limb Ischemia. Circulation, 2011; DOI: 10.1161/CIRCULATIONAHA.110.952325

Cite This Page:

University of Bristol. "MicroRNAs could increase the risk of amputation in diabetics." ScienceDaily. ScienceDaily, 12 January 2011. <www.sciencedaily.com/releases/2011/01/110112122517.htm>.
University of Bristol. (2011, January 12). MicroRNAs could increase the risk of amputation in diabetics. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/01/110112122517.htm
University of Bristol. "MicroRNAs could increase the risk of amputation in diabetics." ScienceDaily. www.sciencedaily.com/releases/2011/01/110112122517.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins