Featured Research

from universities, journals, and other organizations

Microelectronics: Electron gas on the surface of an insulator opens the way to multifunctional transistors

Date:
January 17, 2011
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Researchers have succeeded in creating a conductive layer on the surface of strontium titanate (SrTiO3), a transparent insulating material considered to be very promising for the development of future microelectronics applications. Two nanometers thick, this conductive layer is a two-dimensional metallic electron gas (2DEG) that is part of the insulating material.

Researchers at CNRS and Université Paris-Sud 11[1] have succeeded in creating a conductive layer on the surface of strontium titanate (SrTiO3), a transparent insulating material considered to be very promising for the development of future microelectronics applications. Two nanometers thick, this conductive layer is a two-dimensional metallic electron gas (2DEG) that is part of the insulating material. Easy to produce, it opens new possibilities for electronics based on transition metal oxides (the SrTiO3 family), taking advantage of these materials' vast range of physical properties (superconductivity, magnetism, thermoelectricity, etc.) to integrate a number of different functions in a single microelectronic device. A paper explaining this unexpected discovery, arising from research at the SOLEIL synchrotron, was published in the January 13, 2011 issue of Nature.

Today's microelectronic components consist of layers of semiconductors on a silicon substrate. In order to sustain the pace of periodic upgrades in the performance of microelectronic devices beyond 2020, alternative technological solutions are being investigated. Researchers are increasingly turning their attention to transition metal oxides[2], which offer promising physical properties such as superconductivity[3], magnetoresistance[4], thermoelectricity[5], multiferroicity[6] and photocatalytic capacity[7].

Within this family of materials, strontium titanate (SrTiO3) has been the subject of extensive research. This insulating material becomes a good conductor when it is doped, for example by creating a few surface oxygen vacancies. The interfaces between SrTiO3 and other oxides (LaTiO3 or LaAlO3) are conductive, even though the two materials are insulators. Moreover, they offer properties like superconductivity, magnetoresistance and thermoelectricity, with very good performances at room temperature. The problem, however, is that interfaces between oxides are very difficult to produce.

Now an unexpected discovery has burst through this technological barrier. An international team led by researchers at CNRS and Université Paris-Sud 11 has produced a two-dimensional metallic electron gas (2DEG) on the surface of SrTiO3. This conductive layer, approximately two nanometers thick, was obtained by vacuum-cleaving a piece of strontium titanate, a very simple and economical process. The constituent elements of SrTiO3 are natural resources available in large quantities, and the compound is non-toxic, unlike the materials most widely used in microelectronics today (bismuth tellurides). In addition, 2DEGs could probably be created on the surface of other transition metal oxides using a similar technique.

The discovery of a conductive layer of this type (not requiring the addition of a layer of another material) is a significant step forward for oxide-based microelectronics. It could make it possible to combine the intrinsic multifunctional properties of transition metal oxides with those of the two-dimensional metal on their surface. Possible developments could include the coupling of a ferroelectric oxide with the electron gas on its surface to produce non-volatile memories, or the inclusion of transparent circuits on the surface of solar cells or touch screens.

The 2DEG on the surface of strontium titanate was identified and studied in experiments using angle-resolved photoemission spectroscopy (ARPES) at the SOLEIL synchrotron in Saint-Aubin, France, and the Synchrotron Radiation Center at the University of Wisconsin, USA.

[1] The project was carried out by researchers at the CSNSM (Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, Center for Nuclear Spectrometry and Mass Spectrometry, Université Paris-Sud 11/CNRS) in close collaboration with the Laboratoire de Physique des Solides (Solid Physics Laboratory, Université Paris-Sud 11/CNRS), the CNRS/Thales Unité Mixte de Physique (Mixed Physics Unit) and the Institut d'Electronique Fondamentale (Fundamental Electronics Institute, Université Paris-Sud 11/CNRS).

[2] Copper, titanium, manganese, iron, cobalt, nickel, etc.

[3] The capacity to conduct electrical current with no loss of energy.

[4] Resistance change of several orders of magnitude under the effect of a very weak magnetic field; used in computer hard disks and USB keys.

[5] The capacity to transform a temperature gradient into electrical power, which could be used, for example, to capture the heat emitted by a computer and cycle it back into the system as electrical energy (thus using less power from the battery or mains supply).

[6] Coexistence of ferroelectricity, ferromagnetism and/or ferroelasticity, characteristic of certain iron or manganese oxides.

[7] Characteristic of certain titanium oxides, which can even induce hydrolysis (the breakdown of water into hydrogen and oxygen) in the presence of ultraviolet light.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M. J. Rozenberg. Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature, 2011; 469 (7329): 189 DOI: 10.1038/nature09720

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Microelectronics: Electron gas on the surface of an insulator opens the way to multifunctional transistors." ScienceDaily. ScienceDaily, 17 January 2011. <www.sciencedaily.com/releases/2011/01/110117105834.htm>.
CNRS (Délégation Paris Michel-Ange). (2011, January 17). Microelectronics: Electron gas on the surface of an insulator opens the way to multifunctional transistors. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2011/01/110117105834.htm
CNRS (Délégation Paris Michel-Ange). "Microelectronics: Electron gas on the surface of an insulator opens the way to multifunctional transistors." ScienceDaily. www.sciencedaily.com/releases/2011/01/110117105834.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) — Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins