Featured Research

from universities, journals, and other organizations

Scientists grow arteries with high level of elastic protein: Big step for living vascular grafts

Date:
January 31, 2011
Source:
University of Pittsburgh
Summary:
Researchers have grown arteries that exhibit the elasticity of natural blood vessels at the highest levels reported to date, a development that could overcome a major barrier to creating living-tissue replacements for damaged arteries. The team used smooth muscle cells from adult baboons to produce arteries containing approximately 20 percent as much of the protein elastin -- which allows vessels to expand and retract in response to blood flow -- as an inborn artery.

University of Pittsburgh researchers have grown arteries that exhibit the elasticity of natural blood vessels at the highest levels reported, a development that could overcome a major barrier to creating living-tissue replacements for damaged arteries, the team reports in the Proceedings of the National Academy of Sciences.

The team used smooth muscle cells from adult baboons to produce the first arteries grown outside the body that contain a substantial amount of the pliant protein elastin, which allows vessels to expand and retract in response to blood flow. Lead researcher Yadong Wang, a professor of bioengineering in Pitt's Swanson School of Engineering, his postdoctoral researcher Kee-Won Lee, and Donna Stolz, a professor of cell biology and physiology in Pitt's School of Medicine, cultured the baboon cells in a nutrient-rich solution to bear arteries with approximately 20 percent as much elastin as an inborn artery.

The Pitt process is notable for its simplicity, Wang said. Elastin -- unlike its tougher counterpart collagen that gives vessels their strength and shape -- has been notoriously difficult to reproduce. The only successful methods have involved altering cell genes with a virus; rolling cell sheets into tubes; or culturing elastin with large amounts of transforming growth factor, Wang said. And still these previous projects did not report a comparison of elastin content with natural vessels.

Wang and his colleagues had strong, functional arteries in three weeks. The team first seeded smooth-muscle cells from 4-year-old baboons -- equivalent to 20-year-old humans -- into degradable rubber tubes chambered like honey combs. They then transferred the tubes to a bioreactor that pumped the nutrient solution through the tube under conditions mimicking the human circulatory system -- the pump produced a regular pulse, and the fluid was kept at 98.6 degrees Fahrenheit. As the muscle cells grew, they produced proteins that fused to form the vessel.

Mechanical tests revealed that the cultured artery could withstand a burst pressure between 200 and 300 millimeters of mercury (mmHg), the standard unit for blood pressure, Wang said; healthy human blood pressure is below 120 mmHg. In addition to containing elastin, the artery also had approximately 10 percent of the collagen found in a natural vessel, Wang said.

The process the Pitt team used to cultivate the artery resembles how it would be used in a patient, he explained. The cell-seeded tube would be grafted onto an existing artery. As the rubber tube degrades, the vascular graft would develop into a completely biological vessel.

The next steps in the project, Wang said, are to design a vessel that fully mimics the three-layer structure of a human artery and to prepare for surgical trials.

The project received support from the National Heart, Lung, and Blood Institute of the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kee-Won Lee, Donna B. Stolz and Yadong Wang. Substantial expression of mature elastin in arterial constructs. PNAS, January 31, 2011 DOI: 10.1073/pnas.1017834108

Cite This Page:

University of Pittsburgh. "Scientists grow arteries with high level of elastic protein: Big step for living vascular grafts." ScienceDaily. ScienceDaily, 31 January 2011. <www.sciencedaily.com/releases/2011/01/110131161346.htm>.
University of Pittsburgh. (2011, January 31). Scientists grow arteries with high level of elastic protein: Big step for living vascular grafts. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2011/01/110131161346.htm
University of Pittsburgh. "Scientists grow arteries with high level of elastic protein: Big step for living vascular grafts." ScienceDaily. www.sciencedaily.com/releases/2011/01/110131161346.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins