Featured Research

from universities, journals, and other organizations

Underwater ridges impact ocean's flow of warm water; Findings to improve climate models

Date:
February 4, 2011
Source:
U.S. Geological Survey
Summary:
New discoveries on how underwater ridges impact the ocean's circulation system will help improve climate projections. An underwater ridge can trap the flow of cold, dense water at the bottom of the ocean. Without the ridge, deepwater can flow freely and speed up the ocean circulation pattern, which generally increases the flow of warm surface water. Warm water on the ocean's surface makes the formation of sea ice difficult. With less ice present to reflect the sun, surface water will absorb more sunlight and continue to warm.

New discoveries on how underwater ridges impact the ocean's circulation system will help improve climate projections.

Related Articles


An underwater ridge can trap the flow of cold, dense water at the bottom of the ocean. Without the ridge, deepwater can flow freely and speed up the ocean circulation pattern, which generally increases the flow of warm surface water.

Warm water on the ocean's surface makes the formation of sea ice difficult. With less ice present to reflect the sun, surface water will absorb more sunlight and continue to warm.

U.S. Geological Survey scientists looked back 3 million years, to the mid-Pliocene warm period, and studied the influence of the North Atlantic Ocean's Greenland-Scotland Ridge on surface water temperature.

"Sea-surface temperatures in the North Atlantic and Arctic Oceans were much warmer during the mid-Pliocene warm period than they are today, but climate models so far have been unable to fully understand and account for the cause of this large scale of warming," said USGS scientist Marci Robinson. "Our research suggests that a lower height of the Greenland-Scotland Ridge during this geologic age was a contributor to the increase of poleward heat transport."

"This is the first time the impact of a North Atlantic underwater ridge on the ocean circulation system was tested in a mid-Pliocene experiment," said Robinson. "Understanding this process allows for more accurate predictions of factors such as ocean temperature and ice volume changes."

Research was conducted on the mid-Pliocene because it is the most recent interval in the earth's history in which global temperatures reached and remained at levels similar to those projected for the 21st century by the Intergovernmental Panel on Climate Change. Therefore, it may be one of the closest analogs in helping to understand the earth's current and future conditions.

The article was published in the journal, Palaeogeography, Palaeoclimatology, Palaeoecology, and can be viewed online. Any journalists who are not registered with this journal and cannot view this article can contact us to have a copy emailed to them.

This research contributes to the scientific foundation needed to make sound planning decisions in response to changes in climate and land use. To learn more, visit the Climate and Land Use Change website (http://www.usgs.gov/climate_landuse/).

The USGS led this research through the Pliocene Research, Interpretation and Synoptic Mapping group. The primary collaborators in this research are the University of Leeds, University of Bristol and the British Geological Survey. More information about PRISM research is available online (http://geology.er.usgs.gov/eespteam/prism/index.html).


Story Source:

The above story is based on materials provided by U.S. Geological Survey. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marci M. Robinson, Paul J. Valdes, Alan M. Haywood, Harry J. Dowsett, Daniel J. Hill, Stephen M. Jones. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011; DOI: 10.1016/j.palaeo.2011.01.004

Cite This Page:

U.S. Geological Survey. "Underwater ridges impact ocean's flow of warm water; Findings to improve climate models." ScienceDaily. ScienceDaily, 4 February 2011. <www.sciencedaily.com/releases/2011/02/110203101301.htm>.
U.S. Geological Survey. (2011, February 4). Underwater ridges impact ocean's flow of warm water; Findings to improve climate models. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/02/110203101301.htm
U.S. Geological Survey. "Underwater ridges impact ocean's flow of warm water; Findings to improve climate models." ScienceDaily. www.sciencedaily.com/releases/2011/02/110203101301.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins