Science News
from research organizations

World phosphorus use crosses critical threshold

Date:
February 15, 2011
Source:
University of Wisconsin-Madison
Summary:
Recalculating the global use of phosphorus, a fertilizer linchpin of modern agriculture, a team of researchers warns that the world's stocks may soon be in short supply and that overuse in the industrialized world has become a leading cause of the pollution of lakes, rivers and streams.
Share:
       
FULL STORY

Algae collects on the surface water along the south shoreline of Lake Mendota near the University of Wisconsin-Madison on June 23, 2008. The algae blooms that occur in surface waters such as lakes and streams are fueled primarily by excess phosphorous, which runs off farm fields and suburban lawns. A new study by UW-Madison limnologist Stephen Carpenter recalculates global use of phosphorous and shows that the element's overuse is the primary cause of the pollution of fresh surface water.
Credit: Bryce Richter

Recalculating the global use of phosphorus, a fertilizer linchpin of modern agriculture, a team of researchers warns that the world's stocks may soon be in short supply and that overuse in the industrialized world has become a leading cause of the pollution of lakes, rivers and streams.

Writing in the Feb. 14 edition of the journal Environmental Research Letters, Stephen Carpenter of the University of Wisconsin-Madison and Elena Bennett of McGill University report that the human use of phosphorus, primarily in the industrialized world, is causing the widespread eutrophication of fresh surface water. What's more, the minable global stocks of phosphorus are concentrated in just a few countries and are in decline, posing the risk of global shortages within the next 20 years.

"There is a finite amount of phosphorus in the world," says Carpenter, a UW-Madison professor of limnology and one of the world's leading authorities on lakes and streams. "This is a material that's becoming more rare and we need to use it more efficiently."

Phosphorus is an essential element for life. Living organisms, including humans, have small amounts and the element is crucial for driving the energetic processes of cells. In agriculture, phosphorus mined from ancient marine deposits is widely used to boost crop yields. The element also has other industrial uses.

But excess phosphorus from fertilizer that washes from farm fields and suburban lawns into lakes and streams is the primary cause of the algae blooms that throw freshwater ecosystems out of kilter and degrade water quality. Phosphorus pollution poses a risk to fish and other aquatic life as well as to the animals and humans who depend on clean fresh water. In some instances, excess phosphorus sparks blooms of toxic algae, which pose a direct threat to human and animal life.

"If you have too much phosphorus, you get eutrophication," explains Carpenter of the cycle of excessive plant and algae growth that significantly degrades bodies of fresh water. "Phosphorus stimulates the growth of algae and weeds near shore and some of the algae can contain cyanobacteria, which are toxic. You lose fish. You lose water quality for drinking."

The fertilizer-fueled algae blooms themselves amplify the problem as the algae die and release accumulated phosphorus back into the water.

Carpenter and Bennett write in their Environmental Research Letters report that the "planetary boundary for freshwater eutrophication has been crossed while potential boundaries for ocean anoxic events and depletion of phosphate rock reserves loom in the future."

Complicating the problem, says Carpenter, is the fact that excess phosphorus in the environment is a problem primarily in the industrialized world, mainly Europe, North America and parts of Asia. In other parts of the world, notably Africa and Australia, soils are phosphorus poor, creating a stark imbalance. Ironically, soils in places like North America, where fertilizers with  are most commonly applied, are already loaded with the element.

"Some soils have plenty of phosphorus, and some soils do not and you need to add phosphorus to grow crops on them," Carpenter notes. "It's this patchiness that makes the problem tricky."

Bennett and Carpenter argue that agricultural practices to better conserve phosphate within agricultural ecosystems are necessary to avert the widespread pollution of surface waters. Phosphorus from parts of the world where the element is abundant, they say, can be moved to phosphorus deficient regions of the world by extracting phosphorus from manure, for example, using manure digesters.

Deposits of phosphate, the form of the element that is mined for agriculture and other purposes, take many millions of years to form. The nations with the largest reserves of the element are the United States, China and Morocco.

The new study was supported by grants from the U.S. National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.


Story Source:

The above post is reprinted from materials provided by University of Wisconsin-Madison. The original item was written by Terry Devitt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephen R Carpenter and Elena M Bennett. Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters, 2011 DOI: 10.1088/1748-9326/6/1/014009

Cite This Page:

University of Wisconsin-Madison. "World phosphorus use crosses critical threshold." ScienceDaily. ScienceDaily, 15 February 2011. <www.sciencedaily.com/releases/2011/02/110214163110.htm>.
University of Wisconsin-Madison. (2011, February 15). World phosphorus use crosses critical threshold. ScienceDaily. Retrieved July 2, 2015 from www.sciencedaily.com/releases/2011/02/110214163110.htm
University of Wisconsin-Madison. "World phosphorus use crosses critical threshold." ScienceDaily. www.sciencedaily.com/releases/2011/02/110214163110.htm (accessed July 2, 2015).

Share This Page: