Featured Research

from universities, journals, and other organizations

What a rat can tell us about touch

Date:
February 22, 2011
Source:
Northwestern University
Summary:
One scientist uses the rat whisker system as a model to understand how the brain seamlessly integrates the sense of touch with movement.

Rats are nocturnal, burrowing animals that move their whiskers rhythmically to explore the environment by touch. Using only tactile information from its whiskers, a rat can determine all of an object's spatial properties, including size, shape, orientation and texture.
Credit: iStockphoto/Peta Curnow

In her search to understand one of the most basic human senses -- touch -- Mitra Hartmann turns to what is becoming one of the best studied model systems in neuroscience: the whiskers of a rat. In her research, Hartmann, associate professor of biomedical engineering and mechanical engineering in the McCormick School of Engineering and Applied Science at Northwestern University, uses the rat whisker system as a model to understand how the brain seamlessly integrates the sense of touch with movement.

Hartmann discussed her research in a daylong seminar "Body and Machine" at the American Association for the Advancement of Science (AAAS) annual meeting in Washington, D.C. Her presentation was part of the session, "Linking Mechanics, Robotics, and Neuroscience: Novel Insights from Novel Systems," held on Feb. 18.

Rats are nocturnal, burrowing animals that move their whiskers rhythmically to explore the environment by touch. Using only tactile information from its whiskers, a rat can determine all of an object's spatial properties, including size, shape, orientation and texture. Hartmann's research group is particularly interested in characterizing the mechanics of sensory behaviors, and how mechanics influences perception.

"The big question our laboratory is interested in is how do animals, including humans, actively move their sensors through the environment, and somehow turn that sensory data into a stable perception of the world," Hartmann says.

Hundreds of papers are published each year that use the rat whisker system as a model to understand neural processing. But there is a big missing piece that prevents a full understanding the neural signals recorded in these studies: no one knows how to represent the "touch" of a whisker in terms of mechanical variables. "We don't understand touch nearly as well as other senses," Hartmann says. "We know that visual and auditory stimuli can be quantified by the intensity and frequency of light and sound, but we don't fully understand the mechanics that generate our sense of touch."

In order to gain a better understanding of how the rat uses its whiskers to sense its world, Hartmann's group works to both better understand the rat's behavior and to create models of the system that enable the creation of artificial whisker arrays.

To determine how a rat can sense the shape of an object, Hartmann's team developed a light sheet to monitor the precise locations of the whiskers as they came in contact with the object. Using high-speed video, the team can also analyze how the rat moves its head to explore different shapes.

More recently, Hartmann's team has created a model that establishes the full structure of the rat head and whisker array. This means that the team can now simulate the rat "whisking " into different objects, and predict the full range of inputs into the whisker system as a rat encounters an object. The simulations can then be compared against real behavior, as monitored with the light sheet.

These advances will provide insight into the sense of touch, but may also enable new technologies that could make use of the whisker system. For example, Hartmann's lab created arrays of robotic whiskers that can, in several respects, mimic the capabilities of mammalian whiskers. The researchers demonstrated that these arrays can sense information about both object shape and fluid flow.

"We show that the bending moment, or torque, at the whisker base can be used to generate three-dimensional spatial representations of the environment," Hartmann says. "We used this principle to make arrays of robotic whiskers that in replicate much of the basic mechanics of rat whiskers." The technology, she said, could be used to extract the three-dimensional features of almost any solid object.

Hartmann envisions that a better understanding of the whisker system may be useful for engineering applications in which vision is limited. But most importantly, a better understanding of the rat whisker system could translate into a better understanding of ourselves.

"Although whiskers and hands are very different, the basic neural pathways that process tactile information are in many respects similar across mammals," Hartmann says. "A better understanding of neural processing in the whisker system may provide insights into how our own brains process information."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "What a rat can tell us about touch." ScienceDaily. ScienceDaily, 22 February 2011. <www.sciencedaily.com/releases/2011/02/110218092535.htm>.
Northwestern University. (2011, February 22). What a rat can tell us about touch. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2011/02/110218092535.htm
Northwestern University. "What a rat can tell us about touch." ScienceDaily. www.sciencedaily.com/releases/2011/02/110218092535.htm (accessed October 23, 2014).

Share This



More Plants & Animals News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Family Pleads for Pet Pig to Stay at Home

Family Pleads for Pet Pig to Stay at Home

AP (Oct. 22, 2014) The Johnson family lost their battle with the Chesterfield County, Virginia Planning Commission to allow Tucker, their pet pig, to stay in their home, but refuse to let the board keep Tucker away. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins