Featured Research

from universities, journals, and other organizations

New pathogen connected to severe early childhood caries identified

Date:
February 28, 2011
Source:
Forsyth Institute
Summary:
Researchers have made a significant discovery about the nature of childhood dental disease. They have identified a new pathogen connected to severe early childhood caries (cavities). This bacterium, Scardovia wiggsiae, was present in the mouths of children with severe early childhood caries when other known pathogens such as Streptococcus mutans were not detected. This research may offer the potential to intervene and halt the progression of disease.

Researchers at The Forsyth Institute have made a significant discovery about the nature of childhood dental disease. The scientific studies led by Anne Tanner, BDS, Ph.D., identified a new pathogen connected to severe early childhood caries (cavities). This bacterium, Scardovia wiggsiae, was present in the mouths of children with severe early childhood caries when other known pathogens such as Streptococcus mutans were not detected. This research may offer the potential to intervene and halt the progression of disease.

Related Articles


Early childhood caries, ECC, is the most common chronic infectious disease of childhood in the United States. Severe ECC can destroy primary teeth, cause painful abscesses and is the major reason for hospital visits for young children. This condition disproportionately affects disadvantaged socio-economic groups. This research, which will be published in the April issue of Journal of Clinical Microbiology, provides new insight on the microbiota of severe early childhood caries.

Dental caries is caused by an interaction between bacteria, host susceptibility and a carbohydrate diet that contains large amounts of sugar. Dr. Tanner published an updated evaluation of the diet associated with severe-ECC in collaboration with Dr. Carole Palmer at Tufts University in the Journal of Dental Research in 2010. The bacterial species Streptococcus mutans is widely recognized as the primary pathogen in early childhood caries. However, it is also present in people without disease and is not detected in all cases of childhood caries. This suggests that other species such as S. wiggsiae are also disease causing pathogens.

"In my work, I have seen the tremendous public health impact of severe early childhood caries," said. Dr. Anne Tanner, Senior Member of Staff, Department of Molecular Genetics, The Forsyth Institute.

"Understanding the causes of severe dental decay in young children is the first step in identifying an effective cure."

Study summary

Severe early childhood caries (ECC), while strongly associated with Streptococcus mutans using selective detection methods (culture, PCR), has also been associated with other bacteria using molecular cloning approaches. The aim of this study was to evaluate the microbiota of severe-ECC using anaerobic culture. The microbial composition of dental plaque from 42 severe-ECC children was compared with that of caries-free children. Bacterial samples were cultured anaerobically on blood and acid (pH 5) agars. Isolates were purified, and partial sequences for the 16S rRNA gene were obtained from 5608 isolates. Sequence based analysis of the 16S rRNA isolate libraries from blood and acid agars of severe-ECC and caries-free children had >90% population coverage with greater diversity in the blood isolate library. Isolate sequences were compared with taxa sequences in the Human Oral Microbiome Database (HOMD) and 198 HOMD taxa were identified, including 45 previously uncultivated taxa, 29 extended HOMD taxa and 45 potential novel groups.

The major species associated with severe-ECC included Streptococcus mutans, Scardovia wiggsiae, Veillonella parvula, Streptococcus cristatus and Actinomyces gerensceriae. S. wiggsiae was significantly associated with severe-ECC children in the presence and absence of S. mutans. Dr. Tanner and her team conclude that anaerobic culture detected as wide a diversity of species in ECC as observed using cloning approaches. Culture coupled with 16S rRNA identification identified over 74 isolates for human oral taxa without previously cultivated representatives. The major caries-associated species were S. mutans and S. wiggsiae, the latter of which is a candidate as a newly recognized caries pathogen.

This study was conducted with collaborators at the Goldman School of Dental Medicine, Boston University, and Tufts University School of Dental Medicine and with Dr. Floyd Dewhirst and resources of the Human Oral Microbiome Database (HOMD) at Forsyth Institute. HOMD links several types of information on oral microbes to a consistent naming system. HOMD contains descriptions of the microbes, their metabolism, and their ability to cause disease along with information on their DNA and proteins, as well as to the scientific literature.


Story Source:

The above story is based on materials provided by Forsyth Institute. Note: Materials may be edited for content and length.


Journal References:

  1. A. C. R. Tanner, J. M. J. Mathney, R. L. Kent, N. I. Chalmers, C. V. Hughes, C. Y. Loo, N. Pradhan, E. Kanasi, J. Hwang, M. A. Dahlan, E. Papadopolou, F. E. Dewhirst. Cultivable Anaerobic Microbiota of Severe Early Childhood Caries.. Journal of Clinical Microbiology, 2011; DOI: 10.1128/JCM.02427-10
  2. C. A. Palmer, R. Kent, C. Y. Loo, C. V. Hughes, E. Stutius, N. Pradhan, M. Dahlan, E. Kanasi, S. S. Arevalo Vasquez, A. C. R. Tanner. Diet and Caries-associated Bacteria in Severe Early Childhood Caries. Journal of Dental Research, 2010; 89 (11): 1224 DOI: 10.1177/0022034510376543

Cite This Page:

Forsyth Institute. "New pathogen connected to severe early childhood caries identified." ScienceDaily. ScienceDaily, 28 February 2011. <www.sciencedaily.com/releases/2011/02/110228090214.htm>.
Forsyth Institute. (2011, February 28). New pathogen connected to severe early childhood caries identified. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/02/110228090214.htm
Forsyth Institute. "New pathogen connected to severe early childhood caries identified." ScienceDaily. www.sciencedaily.com/releases/2011/02/110228090214.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins