Featured Research

from universities, journals, and other organizations

New method for infectious diseases research

Date:
March 3, 2011
Source:
UmeŚ universitet
Summary:
Infectious diseases researchers are studying the surface properties of bacteria together with materials scientists. Studies of the outermost parts of the cell walls of bacteria yield new information about the chemical composition of structures that are important for the capacity of bacteria to infect organisms.

Infectious diseases researchers at UmeŚ University in Sweden are studying the surface properties of bacteria together with materials scientists. Studies of the outermost parts of the cell walls of bacteria yield new information about the chemical composition of structures that are important for the capacity of bacteria to infect organisms. The findings are now being reported in the Journal of Biological Chemistry.

Related Articles


When bacteria infect a host organism, they usually attach to tissue cells. Infectious diseases scientists at UmeŚ University are studying structural details of the outermost layer of bacterial cells in order to find new substances that can prevent bacterial infections. In collaboration with materials researchers at the Department of Chemistry, they describe new methods that facilitate and speed up their studies.

Chemist Madeleine Ramstedt is pursuing research on a material with new properties that prevent bacteria from attaching to its surface. The new material would be optimal for equipment in health care, where biofilms of bacteria can be a source of infection. In her research, Madeleine Ramstedt uses spectroscopic methods, among others, that she is now making available to her colleagues in the research consortium UmeŚ Centre for Microbial Research, UCMR.

Microbiologists Sun Nyunt Wai, Ryoma Nakao, and Bernt Eric Uhlin, together with chemists Jean-FranÁois Boily and Madeleine Ramstedt, were investigating whether new physiochemical analysis methods could also be used for microbial studies. The scientists combined so-called cryo-x-ray photoelectron spectroscopy with multivariate analysis. This analysis yields specific patterns of intensity curves depending on the chemical composition of the surface of the material being studied.

"We've succeeded also in analyzing the cell surfaces of bacteria with our x-ray spectroscopy. We found strong patterns that we could clearly relate to different compositions in lipids, sugar, protein, and the polymer peptidoglycan in the cell wall of the bacterium that can affect the capacity of a bacterium to infect an organism," explains Madeleine Ramstedt. "The method makes it possible to analyze the outermost layer, about 10 nanometers from the surface."

"Our method is relatively simple in comparison with other methods in which the extraction of various cell components is needed. This means that with our method the surface of the bacteria can be examined under more natural conditions in an intact bacterial cell."

X-ray photoelectron spectroscopy has previously been used to study bacteria, but only to a limited extent. The UmeŚ scientists have managed to optimize the method. "We shock freeze the bacteria and keep them frozen throughout the analysis. This allows us to assume that they do not change during the examination. Now it's possible to compare the cell walls in similar bacteria that have been treated in different ways or that have changed, for example by developing resistance. With our method we can now compare structures in cell walls in pathogenic bacteria with those of non-pathogenic bacteria, all on a larger scale. Hopefully this new method of analysis will yield more rapid results and provide infectious diseases researchers with new clues for finding new antibiotics," says Madeleine Ramstedt.

UCMR is one of UmeŚ University's strong research environments. The centre is an interdisciplinary research consortium that brings together a number of research teams in microbial research with participation from chemistry, medical and clinical microbiology, molecular biology, physics, and bioinformatics.


Story Source:

The above story is based on materials provided by UmeŚ universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Ramstedt, R. Nakao, S. N. Wai, B. E. Uhlin, J.-F. Boily. Monitoring surface chemistry changes in the bacterial cell wall - multivariate analysis of Cryo-X-ray photoelectron spectroscopy data. Journal of Biological Chemistry, 2011; DOI: 10.1074/jbc.M110.209536

Cite This Page:

UmeŚ universitet. "New method for infectious diseases research." ScienceDaily. ScienceDaily, 3 March 2011. <www.sciencedaily.com/releases/2011/03/110303065339.htm>.
UmeŚ universitet. (2011, March 3). New method for infectious diseases research. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2011/03/110303065339.htm
UmeŚ universitet. "New method for infectious diseases research." ScienceDaily. www.sciencedaily.com/releases/2011/03/110303065339.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) ó Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) ó On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com
Thai Customs Seize African Elephant Tusks Worth $6 Mn

Thai Customs Seize African Elephant Tusks Worth $6 Mn

AFP (Apr. 20, 2015) ó Thai customs seize four tonnes of African elephant ivory worth $6 million at a Bangkok port in a container labelled as beans. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) ó A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:††

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:††

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile:† iPhone Android Web
Follow:† Facebook Twitter Google+
Subscribe:† RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins