Featured Research

from universities, journals, and other organizations

Oldest objects in solar system indicate a turbulent beginning

Date:
March 3, 2011
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Scientists have found that calcium, aluminum-rich inclusions (CAIs), some of the oldest objects in the solar system, formed far away from our sun and then later fell back into the mid-plane of the solar system. The findings may lead to a greater understanding of how our solar system and possibly other solar systems formed and evolved.

Compositional X-ray image of the rim and margin of a ~4.6 billion year old calcium aluminum refractory inclusion (CAI) from the Allende carbonaceous chondrite. Core extending well beyond the field of view to the upper left consists of melilite, spinel and perovskite. Rim consists of a sequence of mono-mineral layers a few micrometers thick (hibonite, perovskite, spinel, melilite/sodalite, pyroxene, and olivine). A spinel-rich micro-inclusion appears to have been entrapped while the rim was forming.
Credit: Justin Simon/NASA

Scientists have found that calcium, aluminum-rich inclusions (CAIs), some of the oldest objects in the solar system, formed far away from our sun and then later fell back into the mid-plane of the solar system. The findings may lead to a greater understanding of how our solar system and possibly other solar systems formed and evolved.

Related Articles


CAIs, roughly millimeter- to centimeter in size, are believed to have formed very early in the evolution of the solar system and had contact with nebular gas, either as solid condensates or as molten droplets. Relative to planetary materials, CAIs are enriched with the lightest oxygen isotope and are believed to record the oxygen composition of solar nebular gas where they grew. CAIs, at 4.57 billion years old, are millions of years older than more modern objects in the solar system, such as planets, which formed about 10-50 million years after CAIs.

Using Lawrence Livermore's NanoSIMS (nanometer-scale secondary-ion mass spectrometer) -- an instrument that can analyze samples with nanometer-scale spatial resolution -- LLNL scientists in conjunction with NASA Johnson Space Center, University of California, Berkeley and the University of Chicago measured the concentrations of oxygen isotopes found in the CAIs.

In the recent research, the team studied a specific CAI found in a piece of the Allende meteorite. Allende is the largest carbonaceous chondrite meteorite ever found on Earth. It fell to the ground in 1969 over the Mexican state of Chihuahua and is notable for possessing abundant CAIs.

Their findings imply that CAIs formed from several oxygen reservoirs, likely located in distinct regions of the solar nebula. CAIs travelled within the nebula by lofting outward away from the sun and then later falling back into the mid-plane of the solar system or by spiraling through shock waves around the sun.

Through oxygen isotopic analysis, the team found that rims surrounding the CAI show that late in the CAI's evolution, it was in a nebular environment distinct from where it originated and closer in composition to the environment in which the building materials of the terrestrial planets formed.

"Allende is this very unusual meteorite with all these wonderful inclusions (CAIs)," said Ian Hutcheon, one of the LLNL scientists on the team. "The isotopic measurements indicate that this CAI was transported among several different nebular oxygen isotopic reservoirs, arguably as it passed through into various regions of the protoplanetary disk."

A protoplanetary disk is an area of dense gas surrounding a newly formed star. In this case, the CAI formed when our star was quite young.

"It is particularly interesting in understanding the formation and dynamics of our solar system's protoplanetary disk (and protoplanetary disks in general)," said Justin Simon of NASA Johnson Space Center and lead author of a paper appearing in the March 4 issue of the journal Science.

The new observations, "support early and short-lived fluctuations of the environment in which CAIs formed, either due to transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-sun," Hutcheon said.

Other Livermore researchers include Jennifer Matzel, Erick Ramon and Peter Weber.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Justin I. Simon, Ian D. Hutcheon, Steven B. Simon, Jennifer E. P. Matzel, Erick C. Ramon, Peter K. Weber, Lawrence Grossman, and Donald J. Depaolo. Oxygen Isotope Variations at the Margin of a CAI Records Circulation Within the Solar Nebula. Science, 2011; 331 (6021): 1175-1178 DOI: 10.1126/science.1197970

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Oldest objects in solar system indicate a turbulent beginning." ScienceDaily. ScienceDaily, 3 March 2011. <www.sciencedaily.com/releases/2011/03/110303141544.htm>.
DOE/Lawrence Livermore National Laboratory. (2011, March 3). Oldest objects in solar system indicate a turbulent beginning. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2011/03/110303141544.htm
DOE/Lawrence Livermore National Laboratory. "Oldest objects in solar system indicate a turbulent beginning." ScienceDaily. www.sciencedaily.com/releases/2011/03/110303141544.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Video Shows Stars If They Were as Close to Earth as Sun

Video Shows Stars If They Were as Close to Earth as Sun

Buzz60 (Jan. 30, 2015) Russia&apos;s space agency created a video that shows what our sky would look like with different star if they were as close as our sun. Patrick Jones (@Patrick_E_Jones) walks us through the cool video. Video provided by Buzz60
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins