Featured Research

from universities, journals, and other organizations

New process cleanly extracts oil from tar sands and fouled beaches

Date:
March 20, 2011
Source:
Penn State Materials Research Institute
Summary:
An environmentally friendlier method of separating oil from tar sands has now been developed. The method, which utilizes ionic liquids to separate the heavy viscous oil from sand, is also capable of cleaning oil spills from beaches and separating oil from drill cuttings, the solid particles that must be removed from drilling fluids in oil and gas wells.

A middle layer of ionic liquid separates a bottom layer of sand and clays from an upper layer of bitumen and toluene.
Credit: Paul Painter

An environmentally friendlier method of separating oil from tar sands has been developed by a team of researchers at Penn State. This method, which utilizes ionic liquids to separate the heavy viscous oil from sand, is also capable of cleaning oil spills from beaches and separating oil from drill cuttings, the solid particles that must be removed from drilling fluids in oil and gas wells.

Tar sands, also known as bituminous sands or oil sands, represent approximately two-thirds of the world's estimated oil reserves. Canada is the world's major producer of unconventional petroleum from sands, and the U.S. imports more than one million barrels of oil per day from Canada, about twice as much as from Saudi Arabia. Much of this oil is produced from the Alberta tar sands.

However, the production of petroleum from tar sands causes environmental damage. Part of the damage comes from the storage of contaminated wastewater from the separation process in large open air ponds. Wastewater from the ponds can seep into groundwater and pollute lakes and rivers. In addition, the requirement for large amounts of water can deplete the supply of local fresh water resources. The Penn State separation method uses very little energy and water, and all solvents are recycled and reused.

Paul Painter, professor of polymer science in the Department of Materials Science and Engineering at Penn State, and his group have spent the past 18 months developing a technique that uses ionic liquids (salt in a liquid state) to facilitate separation. The separation takes place at room temperature without the generation of waste process water. "Essentially, all of the bitumen is recovered in a very clean form, without any contamination from the ionic liquids," Painter explained. Because the bitumen, solvents and sand/clay mixture separate into three distinct phases, each can be removed separately and the solvent can be reused.

The process can also be used to extract oil and tar from beach sand after oil spills, such as the Exxon Valdez and Deepwater Horizon incidents. Unlike other methods of cleanup, the Penn State process completely removes the hydrocarbons, and the cleaned sand can be returned to the beach instead of being sent to landfills. In an experiment using sand polluted by the BP oil spill, the team was able to separate hydrocarbons from the sand within seconds. A small amount of water was used to clean the remaining ionic liquids from the sand, but that water was also recoverable. "It was so clean you could toss it back on the beach. Plus, the only extra energy you need is enough to stir the mixture," said Aron Lupinsky, a researcher in Painter's group.

The researchers work with a group of ionic liquids based on 1-alkyl-3-methylimidazolium cations, a positively charged material with high chemical and thermal stability, a low degree of flammability, and almost negligible vapor pressure, which makes recovering the ionic liquid relatively simple. The team has built a functioning bench top model system and is in the process of reducing their discovery to practice for patenting.

In addition to Painter, team members include Bruce Miller, senior research associate in the EMS Energy Institute, and former students Aron Lupinsky and Phil Williams.


Story Source:

The above story is based on materials provided by Penn State Materials Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Penn State Materials Research Institute. "New process cleanly extracts oil from tar sands and fouled beaches." ScienceDaily. ScienceDaily, 20 March 2011. <www.sciencedaily.com/releases/2011/03/110318174921.htm>.
Penn State Materials Research Institute. (2011, March 20). New process cleanly extracts oil from tar sands and fouled beaches. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/03/110318174921.htm
Penn State Materials Research Institute. "New process cleanly extracts oil from tar sands and fouled beaches." ScienceDaily. www.sciencedaily.com/releases/2011/03/110318174921.htm (accessed July 22, 2014).

Share This




More Earth & Climate News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: High Winds Push Growing Washington Widlfire

Raw: High Winds Push Growing Washington Widlfire

AP (July 19, 2014) Pushed by howling, erratic winds, a massive wildfire in north-central Washington was growing rapidly and burning in new directions Saturday. (July 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins