Featured Research

from universities, journals, and other organizations

'Green' cars could be made from pineapples and bananas

Date:
March 28, 2011
Source:
American Chemical Society
Summary:
Your next new car hopefully won't be a lemon. But it could be a pineapple or a banana. Scientists in Brazil have developed a more effective way to use fibers from these and other plants in a new generation of automotive plastics that are stronger, lighter, and more eco-friendly than plastics now in use. Their work could lead to stronger and more sustainable materials for cars and other products.

Your next new car hopefully won't be a lemon. But it could be a pineapple or a banana. That's because scientists in Brazil have developed a more effective way to use fibers from these and other plants in a new generation of automotive plastics that are stronger, lighter, and more eco-friendly than plastics now in use. They described the work, which could lead to stronger, lighter, and more sustainable materials for cars and other products, at the 241st National Meeting & Exposition of the American Chemical Society (ACS).

Study leader Alcides Leo, Ph.D., said the fibers used to reinforce the new plastics may come from delicate fruits like bananas and pineapples, but they are super strong. Some of these so-called nano-cellulose fibers are almost as stiff as Kevlar, the renowned super-strong material used in armor and bulletproof vests. Unlike Kevlar and other traditional plastics, which are made from petroleum or natural gas, nano-cellulose fibers are completely renewable.

"The properties of these plastics are incredible," Leo said, "They are light, but very strong -- 30 per cent lighter and 3-to-4 times stronger. We believe that a lot of car parts, including dashboards, bumpers, side panels, will be made of nano-sized fruit fibers in the future. For one thing, they will help reduce the weight of cars and that will improve fuel economy."

Besides weight reduction, nano-cellulose reinforced plastics have mechanical advantages over conventional automotive plastics, Leo added. These include greater resistance to damage from heat, spilled gasoline, water, and oxygen. With automobile manufacturers already testing nano-cellulose-reinforced plastics, with promising results, he predicted they would be used within two years.

Cellulose is the main material that makes up the wood in trees and other parts of plants. Its ordinary-size fibers have been used for centuries to make paper, extracted from wood that is ground up and processed. In more recent years, scientists have discovered that intensive processing of wood releases ultra-small, or "nano" cellulose fibers, so tiny that 50,000 could fit inside across the width of a single strand of human hair. Like fibers made from glass, carbon, and other materials, nano-cellulose fibers can be added to raw material used to make plastics, producing reinforced plastics that are stronger and more durable.

Leo said that pineapple leaves and stems, rather than wood, may be the most promising source for nano-cellulose. He is with Sao Paulo State University in Sao Paulo, Brazil. Another is curaua, a plant related to pineapple that is cultivated in South America. Other good sources include bananas; coir fibers found in coconut shells; typha, or "cattails;" sisal fibers produced from the agave plant; and fique, another plant related to pineapples.

To prepare the nano-fibers, the scientists insert the leaves and stems of pineapples or other plants into a device similar to a pressure cooker. They then add certain chemicals to the plants and heat the mixture over several cycles, producing a fine material that resembles talcum powder. The process is costly, but it takes just one pound of nano-cellulose to produce 100 pounds of super-strong, lightweight plastic, the scientists said.

"So far, we're focusing on replacing automotive plastics," said Leo. "But in the future, we may be able to replace steel and aluminum automotive parts using these plant-based nanocellulose materials."

Similar plastics also show promise for future use in medical applications, such as replacement materials for artificial heart valves, artificial ligaments, and hip joints, Leo and colleagues said.

The scientists acknowledge funding from the government of Brazil, Pematec, Toro Industria and Comercio Ltd., and other private companies.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "'Green' cars could be made from pineapples and bananas." ScienceDaily. ScienceDaily, 28 March 2011. <www.sciencedaily.com/releases/2011/03/110328092459.htm>.
American Chemical Society. (2011, March 28). 'Green' cars could be made from pineapples and bananas. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2011/03/110328092459.htm
American Chemical Society. "'Green' cars could be made from pineapples and bananas." ScienceDaily. www.sciencedaily.com/releases/2011/03/110328092459.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins