Featured Research

from universities, journals, and other organizations

Scientists have identifed an abnormal disease pathway in dystonia

Date:
May 2, 2011
Source:
North Shore-Long Island Jewish (LIJ) Health System
Summary:
Scientists have figured out why some people with a gene that causes dystonia never get symptoms and others with the same mutation are disabled by the abnormal movements.

Scientists tried creating a laboratory model of idiopathic torsion dystonia, a neurological condition marked by uncontrolled movements, particularly twisting and abnormal postures. But the genetic defect that causes dystonia in humans didn't seem to work in the laboratory models that showed no symptoms whatsoever.

Now, a team of scientists at The Feinstein Institute for Medical Research have figured out why and the finding could lead to ways to test novel treatments. Aziz M. Ulug, PhD, and his colleagues at the Feinstein's Center for Neurosciences wanted to understand why some people with a gene that causes dystonia never get symptoms and others with the same mutation are disabled by the abnormal movements. Since the first dystonia gene was identified in the 1990s, scientists have observed that most people who carry this mutation never develop symptoms.

Last year, a team led by David Eidelberg, MD, head of the Feinstein Institute's Center for Neuroscience, figured out why the majority of these mutation carriers are protected from symptoms -- they have an additional lesion that evens the score. In an article published in the Journal of Neuroscience, the team described two separate areas along the brain pathway that links the cerebellum to the motor cortex. The integrity of the pathway in these two regions together determines whether a mutation carrier will display clinical manifestations of the disease.

New advances in diffusion imaging in humans led to the discovery that there were two places along the motor pathway that seemed to stop the flow of neural signals from one part of the circuit to the other. Those with only one lesion in the circuit developed the debilitating movements and those with two lesions did not. "We found a consistent cerebellar pathway problem in all DYT1 carriers. When we went back and looked at those without symptoms, we saw that they had an additional lesion downstream in the portion of the pathway connecting directly to the motor cortex," said Dr. Eidelberg. "This second area of pathway disruption abrogated the effects of the first lesion."

Normally, the cerebellum (a region that controls movement) puts the breaks on the motor cortex by potentiating inhibition at the cortical level. It is likely that mutation carriers have a developmental problem in the flow of neural signals along this circuit such that the brain cannot inhibit an unwanted movement. With the second pathway lesion, Dr. Eidelberg explained, "the flow is shut off and the abnormal activity stops."

The Feinstein team has since looked at laboratory models to try to figure out why this second lesion is protective. Since the identification of the DYT1 gene, scientists have been trying to create a genetic model of the movement disorder. But when they placed the same mutation in an experimental mouse model, there was a major problem: no symptoms. Dr. Ulug's team used a novel magnetic resonance approach to understand why the mutant animals were clinically normal. They found that the mutant mice displayed the same two pathway abnormalities that were found in the human gene carriers. However, the animals had dual lesions across the board, resembling the 70 percent of carriers who fail to display clinical manifestations of the disease. The study was published in the Proceedings of the National Academy of Sciences.

Knowing this critical piece of the puzzle may enable scientists to create true laboratory models of the disease -- with symptoms that mimic what is seen in patients. These findings may help to design treatments to make the symptomatic carriers of dystonia genes more like their unaffected counterparts with the same genetic mutation.

There are half a million people in the United States with dystonia. The brains of people with inherited dystonia are normal at autopsy and the exact cause of their movement abnormality is unknown.


Story Source:

The above story is based on materials provided by North Shore-Long Island Jewish (LIJ) Health System. Note: Materials may be edited for content and length.


Cite This Page:

North Shore-Long Island Jewish (LIJ) Health System. "Scientists have identifed an abnormal disease pathway in dystonia." ScienceDaily. ScienceDaily, 2 May 2011. <www.sciencedaily.com/releases/2011/04/110412153815.htm>.
North Shore-Long Island Jewish (LIJ) Health System. (2011, May 2). Scientists have identifed an abnormal disease pathway in dystonia. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2011/04/110412153815.htm
North Shore-Long Island Jewish (LIJ) Health System. "Scientists have identifed an abnormal disease pathway in dystonia." ScienceDaily. www.sciencedaily.com/releases/2011/04/110412153815.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins