Featured Research

from universities, journals, and other organizations

Climate change from black carbon depends on altitude

Date:
April 14, 2011
Source:
Carnegie Institution
Summary:
Scientists have known for decades that black carbon aerosols add to global warming. These airborne particles made of sooty carbon are believed to be among the largest human-made contributors to global warming because they absorb solar radiation and heat the atmosphere. New research quantifies how black carbon's impact on climate depends on its altitude in the atmosphere.

Scientists have known for decades that black carbon aerosols add to global warming. These airborne particles made of sooty carbon are believed to be among the largest human-made contributors to global warming because they absorb solar radiation and heat the atmosphere. New research from Carnegie's Long Cao and Ken Caldeira, along with colleagues George Ban-Weiss and Govindasamy Bala, quantifies how black carbon's impact on climate depends on its altitude in the atmosphere.

Related Articles


Their work, published online by the journal Climate Dynamics, could have important implications for combating global climate change.

Black carbon is emitted from diesel engines and burning wood, among other sources. In the atmosphere, it acts as an absorbing aerosol -- a particle that absorbs the sun's heating rays. (Other types of aerosols reflect the sunlight back out into space, providing a cooling effect.) The climate effect of black carbon is difficult to quantify because these particles heat the air around them, affecting clouds even before they begin to heat the land and ocean surface.

The team's research involved idealized simulations of adding a theoretical megatonne of black carbon uniformly around the globe at different altitudes in the atmosphere. They found that the addition of black carbon near the land and ocean surface caused the surface to heat. As the altitude of black carbon increased, surface warming decreased. The addition of black carbon to the stratosphere caused the land and oceans to cool. This cooling occurred despite the fact that the black carbon caused Earth as a whole to absorb more energy from the sun. When black carbon is high in the atmosphere, it can lose its energy to space while helping to shade the land and ocean surface.

"Black carbon lower in the atmosphere is more effective at warming the surface, even though black carbon particles at higher altitudes absorb more solar radiation," said Ban-Weiss, formerly of Carnegie and currently at Lawrence Berkeley National Laboratory. He continued: "Just analyzing instantaneous changes in absorption of radiation from black carbon cannot accurately predict changes in surface temperatures. If we want a consistent framework for predicting changes in surface air temperature from black carbon we need to account for rapid atmospheric responses in things like clouds."

Black carbon also had varying effects on precipitation. In the lower layers it increased precipitation and in the upper layers it decreased precipitation, a result of changes in atmospheric stability.

"We showed that black carbon near Earth's surface has the greatest effect on global warming. Unfortunately, this is exactly where we are putting most of the black carbon that we add to the atmosphere," Caldeira said. "This black carbon also often causes health problems, so cleaning up these emissions would help both the environment and human health."

Major sources of black carbon emissions into the lower atmosphere include forest fires, cooking stoves, and emissions from trucks and automobiles. Aircraft are a notable source of emissions to the upper atmosphere.

"This study points out the importance of understanding the complexities of how human activities affect the globe. If we want humans to live well while protecting the environment, we need to understand how our activities affect climate," Caldeira said.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. George A. Ban-Weiss, Long Cao, G. Bala and Ken Caldeira. Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dynamics, April 2011 DOI: 10.1007/s00382-011-1052-y

Cite This Page:

Carnegie Institution. "Climate change from black carbon depends on altitude." ScienceDaily. ScienceDaily, 14 April 2011. <www.sciencedaily.com/releases/2011/04/110414104215.htm>.
Carnegie Institution. (2011, April 14). Climate change from black carbon depends on altitude. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2011/04/110414104215.htm
Carnegie Institution. "Climate change from black carbon depends on altitude." ScienceDaily. www.sciencedaily.com/releases/2011/04/110414104215.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
5 Hot Months, 1 Warm Year And All The Arguments To Follow

5 Hot Months, 1 Warm Year And All The Arguments To Follow

Newsy (Nov. 21, 2014) The NOAA released statistics Thursday showing October was the fifth month this year with record temps and 2014 will likely be the hottest on record. Video provided by Newsy
Powered by NewsLook.com
Nations Pledge $9.3 Bn for Green Climate Fund

Nations Pledge $9.3 Bn for Green Climate Fund

AFP (Nov. 20, 2014) Nations meeting in Berlin pledge $9.3 billion (7.4 bn euros) for a climate fund to help poor countries cut emissions and prepare for global warming, just shy of a $10bn target. Duration: 00:46 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins