Featured Research

from universities, journals, and other organizations

Zoom-up star photos poke holes in century-old astronomical theory

Date:
April 19, 2011
Source:
University of Michigan
Summary:
The hottest stars in the universe spin so fast that they get a bit squished at their poles and dimmer around their middle. The 90-year-old theory that predicts the extent of this "gravity darkening" phenomenon has major flaws, according to a new study.

An image of the star Regulus, which University of Michigan astronomers and their colleagues were able to "zoom in" on using a technique called interferometry. Zooming in allowed them to measure the temperature of the star's poles separately from its equator, which enabled them to find flaws in a century-old astronomical theory about hot, fast-spinning stars.
Credit: Xiao Che

The hottest stars in the universe spin so fast that they get a bit squished at their poles and dimmer around their middle. The 90-year-old theory that predicts the extent of this "gravity darkening" phenomenon has major flaws, according to a new study led by University of Michigan astronomers.

The von Zeipel law, named for its creator, Swedish astronomer Edvard Hugo von Zeipel, has been used for the better part of a century to predict the difference in surface gravity, brightness and temperature between a rapidly rotating star's poles and its equator.

Using a technique called interferometry the researchers essentially zoomed in to take close-up pictures and measurements of the winter star Regulus. It's the brightest star in the constellation Leonis and if it were spinning just a few percent faster, it would fly apart.

The astronomers found that the actual difference in temperature between its equator and poles is much less than the old theory predicts.

"Our model fitting of interferometry data shows that while the law correctly describes the trend of surface temperature variation, it deviates quantitively," said Xiao Che, a doctoral student in the Department of Astronomy who is first author of a paper on the findings to be published in Astrophysical Journal on April 20.

"It is surprising to me that von Zeipel's law has been adopted in astronomy for such a long time with so little solid observational evidence."

It's important to get this number right, says John Monnier, an associate professor in the U-M Department of Astronomy.

"In some cases, we found a 5,000-degree Fahrenheit difference between what the theory predicts and what our actual measurements show," Monnier said. "That has a big effect on total luminosity. If we don't take this into account, we get the star's mass and age and total energy output wrong."

Monnier led the creation of the Michigan Infra-Red Combiner (MIRC) instrument that was used to take the measurements that led to this discovery. MIRC uses interferometry to combine the light entering four telescopes at the CHARA array at Georgia State University so that it seems to be coming through a device 100 times larger than the Hubble Space Telescope. The technique lets astronomers see the shape and surface characteristics of stars. Previously, stars were mere points of light even with the largest telescopes.

In this case, zooming in on Regulus let the researchers measure its poles and equator temperatures separately.

"Normally, you would just be able to get an average temperature," Monnier said.

So where did von Zeipel go wrong? Monnier believes his Swedish predecessor didn't take into account circulation on stars that's not unlike wind patterns on Earth.

"The Earth has a hot equator and cold poles and that causes air circulation," Monnier said. "The hot air wants to flow toward the poles and equilibrate, bringing the temperatures closer together. This is a source of some weather patterns on Earth."

The CHARA Array is funded by the National Science Foundation and Georgia State University. Funding for the MIRC combiner came from the University of Michigan and observations were supported through National Science Foundation and NASA.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. X. Che, J. D. Monnier, M. Zhao, E. Pedretti, N. Thureau, A. Mιrand, T. Ten Brummelaar, H. Mcalister, S. T. Ridgway, N. Turner, J. Sturmann and L. Sturmann. Colder and Hotter: Interferometric imaging of β Cassiopeiae and α Leonis. The Astrophysical Journal, Volume 732 Number 2 DOI: 10.1088/0004-637X/732/2/68

Cite This Page:

University of Michigan. "Zoom-up star photos poke holes in century-old astronomical theory." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110418122329.htm>.
University of Michigan. (2011, April 19). Zoom-up star photos poke holes in century-old astronomical theory. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2011/04/110418122329.htm
University of Michigan. "Zoom-up star photos poke holes in century-old astronomical theory." ScienceDaily. www.sciencedaily.com/releases/2011/04/110418122329.htm (accessed July 24, 2014).

Share This




More Space & Time News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) — The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) — A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) — NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) — Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins