Featured Research

from universities, journals, and other organizations

Molecule Nutlin-3a activates a signal inducing cell death and senescence in primary brain tumors

Date:
April 20, 2011
Source:
IDIBELL-Bellvitge Biomedical Research Institute
Summary:
Researchers have found that a small molecule, Nutlin-3a, an antagonist of MDM2 protein, stimulates the signaling pathway of another protein, p53. By this way, it induces cell death and senescence (loss of proliferative capacity) in brain cancer, a fact that slows its growth. These results open the door for MDM2 agonists as new treatments for glioblastomas.

Glioblastoma primary cultures control (CT) and treated with Nutlin (N). Blue staining marks the cell senescence.
Credit: Image courtesy of IDIBELL-Bellvitge Biomedical Research Institute

Researchers of Apoptosis and Cancer Group of the Bellvitge Biomedical Research Institute (IDIBELL) have found that a small molecule, Nutlin-3a, an antagonist of MDM2 protein, stimulates the signalling pathway of another protein, p53. By this way, it induces cell death and senescence (loss of proliferative capacity) in brain cancer, a fact that slows its growth. These results open the door for MDM2 agonists as new treatments for glioblastomas.

Related Articles


Glioblastoma multiforme is the most common brain tumour in adults and the most aggressive. Despite efforts on new treatments and technological innovation in neurosurgery, radiation therapy and clinical trials of new therapeutic agents, most patients die two years after diagnosis. Avelina Tortosa, IDIBELL and University of Barcelona (UB) researcher, coordinator of the study, explained that one objective of her group is "to find substances that sensitize tumour cells to radiotherapy for more efficient treatments."

New therapeutic targets

There is evidence that several genetic alterations promote the growth, invasion and resistance to stimuli that induce programmed cell death (apoptosis). In this sense, the pilot project TCGA (The Cancer Genome Atlas) has sequenced the genome of up to 25 glioblastomas noting that 14% of patients have an increased expression of MDM2 and 35% had alterations in p53 expression (apoptosis-inducing). That's why research is now focused on the development of new therapeutic strategies that target the apoptosis in gliomas.

The aim of this study was to investigate the antitumor activity of Nutlin-3a in cell lines and primary cultures of glioblastoma. Researchers have shown that Nutlin-3a induces apoptosis and cellular senescence by stimulating the p53 pathway in cells, because cells with mutations in this protein don't produce this response. They have also discovered that the use of Nutlin-3a enhances the response of glioblastoma cells to radiotherapy. "The radiation induced DNA damage of tumour cells," explained Tortosa, "the cells activate repairing mechanisms and, if they are unable to repair, they destruct themselves (a mechanism known as apoptosis). With Nutlin-3a we have seen that increases tumour cell death and therefore increases the effectiveness of radiotherapy treatment. "

In conclusion, the results suggest that the MDM2 antagonists may be new therapeutic options for the treatment of glioblastoma patients.

The study has been published in the journal PLOS One.


Story Source:

The above story is based on materials provided by IDIBELL-Bellvitge Biomedical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ruth Villalonga-Planells, Llorenç Coll-Mulet, Fina Martínez-Soler, Esther Castaño, Juan-Jose Acebes, Pepita Giménez-Bonafé, Joan Gil, Avelina Tortosa. Activation of p53 by Nutlin-3a Induces Apoptosis and Cellular Senescence in Human Glioblastoma Multiforme. PLoS ONE, 2011; 6 (4): e18588 DOI: 10.1371/journal.pone.0018588

Cite This Page:

IDIBELL-Bellvitge Biomedical Research Institute. "Molecule Nutlin-3a activates a signal inducing cell death and senescence in primary brain tumors." ScienceDaily. ScienceDaily, 20 April 2011. <www.sciencedaily.com/releases/2011/04/110420112056.htm>.
IDIBELL-Bellvitge Biomedical Research Institute. (2011, April 20). Molecule Nutlin-3a activates a signal inducing cell death and senescence in primary brain tumors. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/04/110420112056.htm
IDIBELL-Bellvitge Biomedical Research Institute. "Molecule Nutlin-3a activates a signal inducing cell death and senescence in primary brain tumors." ScienceDaily. www.sciencedaily.com/releases/2011/04/110420112056.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins