Featured Research

from universities, journals, and other organizations

Studies of mutated protein in Lou Gehrig’s disease reveal new paths for drug discovery

Date:
April 27, 2011
Source:
University of Pennsylvania School of Medicine
Summary:
Several genes have been linked to ALS, with one of the most recent called FUS. Two new studies examined FUS biology in yeast and found that defects in RNA biology may be central to how FUS contributes to ALS, or Lou Gehrig's disease. These findings point to new targets for developing drugs.

The top image is of yeast expressing FUS. Note the presence of FUS clumps in the cytoplasm (green foci) and the position of the nucleus (blue). The bottom image is an electron microscopy image of clumps formed by pure FUS in the test tube.
Credit: Aaron Gitler, PhD, James Shorter, PhD, University of Pennsylvania School of Medicine

Several genes have been linked to ALS, with one of the most recent called FUS. Two new studies in PLoS Biology, one from the University of Pennsylvania School of Medicine, and the other from colleagues at Brandeis University, both examined FUS biology in yeast and found that defects in RNA biology may be central to how FUS contributes to ALS, or Lou Gehrig's disease. These findings point to new targets for developing drugs.

Related Articles


Proteins aggregate to form insoluble clumps in the brain and spinal cord of ALS patients. In some instances of ALS, the clumping protein is FUS, while in other cases it is another protein called TDP-43. FUS and TDP-43 are both RNA-binding proteins with similar features. For example, both proteins contain a region that is remarkably similar to the type of section that enables some proteins to form prions in yeast. Prions are rogue infectious proteins that cause mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. Despite these similarities it was not clear if TDP-43 and FUS both contribute to ALS in similar or different ways.

In 2009, two groups found mutations in the FUS gene in some ALS patients. In the same year, co-senior author Aaron Gitler, PhD, assistant professor of Cell and Developmental Biology, used a yeast model to study FUS and to determine what effect those mutations were having on its function. Meanwhile, co-senior author James Shorter, PhD, assistant professor of Biochemistry and Biophysics, purified the FUS protein and studied the properties that made it readily form clumps. Gitler and Shorter had previously teamed up to study TDP-43 in yeast cells and pure protein assays. "This is an exciting time. The picture is really coming together for the molecular players in ALS." says Gitler.

When the researchers overexpressed human FUS in yeast, clumps formed in the cytoplasm of the yeast cells. TDP-43 formed clumps in the yeast cells too. "However, there were important differences in the way in which FUS and TDP-43 clumped in yeast cells, and pure protein assays," explained Gitler lab postdoctoral fellow and co-first author Zhihui Sun, PhD.

FUS is typically found in the nucleus of human cells. In some ALS-associated mutations of FUS, the protein is more abundant in the cytoplasm, suggesting that it is this misplacement that may be causing disease. In line with that, both groups found that restricting overexpressed normal FUS protein to the nucleus decreased clumping. Both groups showed that the biochemical features that promote clumping differ between FUS and TDP-43.

"The prion-like portion is very important for both proteins to clump, but surprisingly and in contrast to TDP-43, FUS needed additional sequences in a separate part of the protein to initiate clumping," says Shorter. "This suggests that the disease-causing mechanism probably differs between ALS associated with FUS clumping versus TDP-43 clumping," explained Shorter lab research specialist and co-first author Zamia Diaz.

"To be honest, we expected the same behavior for TDP-43 and FUS in yeast and at the pure protein level in terms of how the protein clumps. So, next we asked what proteins reverse the toxicity? Do TDP-43 reversers affect FUS clumping toxicity?" says Gitler.

"We were stunned that they were not the same," notes Shorter.

In the FUS screen they found that genes related to cellular structures called stress granules could rescue FUS-related toxicity in yeast cells. These granules sequester RNAs during times of stress for the cell -- such as increases in temperature, exposure to toxins, or injury -- to use later after stress passes, since cells need to reserve energy. The RNAs are used in the translation of the genetic code into proteins, which uses much of the cell's energy. Mutations in FUS seem to promote it being sequestered in stress granules, and FUS toxicity is associated with these granules. Whether or not these structures played a direct role in FUS toxicity remained unclear. But the new research from both groups suggests that they do play a key role in FUS toxicity. They used genome-wide screens to find genes that could reverse FUS toxicity.

"We were surprised in the genome-wide screens by the lack of overlap in genes that modified FUS toxicity versus TDP-43 toxicity in yeast cells," says Shorter.

"The implication is that we need to target different pathways, that is proteins in FUS-related ALS versus TDP-43-related ALS," adds Diaz.

These studies point the way to new therapeutics for some ALS cases, based on RNA processing. They also suggest caution in the assumption that TDP-43 and FUS both contribute to ALS in the same way. Testing ideas about pathogenesis and treatment is faster and cheaper in yeast, which leads to more rapid progress in understanding the disease and, eventually, its treatment.

"It's truly amazing what we can learn from yeast," concludes Gitler.

Other co-authors on the study are Xiaodong Fang, Michael Hart, Maria Armakola, and Alessandra Chesi, all from Penn.

This study was funded by the National Institutes of Health Director's New Innovator Awards and the National Institute of Neurological Disorders and Stroke, the Robert Packard Center for ALS Research, the Pew Charitable Trusts, and The Ellison Medical Foundation.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal References:

  1. Zhihui Sun, Zamia Diaz, Xiaodong Fang, Michael P. Hart, Alessandra Chesi, James Shorter, Aaron D. Gitler. Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS. PLoS Biology, 2011; 9 (4): e1000614 DOI: 10.1371/journal.pbio.1000614
  2. Shulin Ju, Daniel F. Tardiff, Haesun Han, Kanneganti Divya, Quan Zhong, Lynne E. Maquat, Daryl A. Bosco, Lawrence J. Hayward, Robert H. Brown, Susan Lindquist, Dagmar Ringe, Gregory A. Petsko. A Yeast Model of FUS/TLS-Dependent Cytotoxicity. PLoS Biology, 2011; 9 (4): e1001052 DOI: 10.1371/journal.pbio.1001052

Cite This Page:

University of Pennsylvania School of Medicine. "Studies of mutated protein in Lou Gehrig’s disease reveal new paths for drug discovery." ScienceDaily. ScienceDaily, 27 April 2011. <www.sciencedaily.com/releases/2011/04/110426185249.htm>.
University of Pennsylvania School of Medicine. (2011, April 27). Studies of mutated protein in Lou Gehrig’s disease reveal new paths for drug discovery. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2011/04/110426185249.htm
University of Pennsylvania School of Medicine. "Studies of mutated protein in Lou Gehrig’s disease reveal new paths for drug discovery." ScienceDaily. www.sciencedaily.com/releases/2011/04/110426185249.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins