Featured Research

from universities, journals, and other organizations

Step in breakdown of HIV proteins essential to recognition, destruction of infected cells

Date:
May 9, 2011
Source:
Massachusetts General Hospital
Summary:
A key step in the processing of HIV within cells appears to affect how well the immune system's killer T cells recognize and destroy infected cells. Researchers have found that, as HIV proteins are broken down within cells, there is a great variability in the stability of resulting protein segments, variations that could significantly change how well cells are recognized by the immune system and the potential effectiveness of T-cell-based vaccines.

A key step in the processing of HIV within cells appears to affect how effectively the immune system's killer T cells can recognize and destroy infected cells. Researchers at the Ragon Institute of MGH, MIT and Harvard have found that -- as HIV proteins are broken down within cells, a process that should lead to labeling infected cell for destruction by CD8 T cells -- there is a great variability in the stability of resulting protein segments, variations that could significantly change how well cells are recognized by the immune system.

Their report appears in the June Journal of Clinical Investigation.

"We have identified a novel mechanism by which HIV escapes recognition by virus-specific cytotoxic T cells, says Sylvie Le Gall, PhD, of the Ragon Institute, the paper's senior author. "This discovery may help us better understand the immune-system failure that characterizes HIV infection and provide information critical to the successful development of immune-system-based therapies."

CD8 T cells that have been programmed to target and destroy HIV-infected cells recognize those cells through tiny bits of viral protein, called peptides, displayed on the cell surface. Details of how HIV proteins are broken down into peptides and loaded onto the specialized molecules, called MHC Class I, that carry them to the cell surface are not well understood. Also unknown is whether particular HIV peptides are more effective than others in flagging cells for destruction.

Le Gall and her team first discovered that HIV peptides reduced to a length of 8 to 11 amino acids within infected cells varied greatly in their stability, with some breaking down further within seconds and others remaining unchanged for nearly an hour. Collaborators David Heckerman, MD, PhD, and Carl Kadie from Microsoft Research analyzed the biochemical features of 166 HIV peptides and identified particular structural patterns associated with either stability or instability. The researchers then showed that substituting a stability-associated structural motif for an instability motif significantly increased peptide stability, and vice-versa.

The stability of a peptide within the cell can significantly affect how much peptide is available to be loaded onto MHC Class I molecules and displayed on the cell surface. The authors found that several known HIV mutations significantly reduced peptide stability -- one common mutation virtually abolished the cell-killing action of CD8 T cells. The Microsoft team members have developed a model to predict the probable stability of specific HIV peptides, but more research is needed to determine how variations in stability affect the presentation of the peptide segments called epitopes to CD8 cells and whether changes in peptide stability lead to a more efficient immune response.

"Efforts to develop T-cell-based vaccines need to focus on producing epitopes that elicit the most protective response," says Le Gall, an assistant professor of Medicine at Harvard Medical School. "Modulating peptide stability offers a unique way of regulating epitope presentation in favor of producing the most effective defence against HIV."

Additional co-authors of the Journal of Clinical Investigation report are lead author Estibaliz Lazaro, ,MD; Pamela Stamegna; Shao Chong Zhang, PhD; Pauline Gourdain, PhD; Nicole Y. Lai; Mei Zhang and Sergio A. Martinez, all of the Ragon Institute. The study was supported by grants from the Bill and Melinda Gates Foundation and the National Institute of Allergy and Infectious Disease.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Estibaliz Lazaro, Carl Kadie, Pamela Stamegna, Shao Chong Zhang, Pauline Gourdain, Nicole Y. Lai, Mei Zhang, Sergio A. Martinez, David Heckerman, Sylvie Le Gall. Variable HIV peptide stability in human cytosol is critical to epitope presentation and immune escape. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI44932

Cite This Page:

Massachusetts General Hospital. "Step in breakdown of HIV proteins essential to recognition, destruction of infected cells." ScienceDaily. ScienceDaily, 9 May 2011. <www.sciencedaily.com/releases/2011/05/110509150744.htm>.
Massachusetts General Hospital. (2011, May 9). Step in breakdown of HIV proteins essential to recognition, destruction of infected cells. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/05/110509150744.htm
Massachusetts General Hospital. "Step in breakdown of HIV proteins essential to recognition, destruction of infected cells." ScienceDaily. www.sciencedaily.com/releases/2011/05/110509150744.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins