Featured Research

from universities, journals, and other organizations

Novel mouse model provides insight into rare neurodegenerative disease

Date:
May 12, 2011
Source:
Cell Press
Summary:
New research sheds light on common pathogenic mechanisms shared by Huntington's disease (HD) and HD-like disorders. The study uses a new transgenic mouse model for an HD-like disorder to unravel complex molecular events that drive disease pathology.

New research sheds light on common pathogenic mechanisms shared by Huntington's disease (HD) and HD-like disorders. The study, published by Cell Press in the May 12, 2011, issue of the journal Neuron, uses a new transgenic mouse model for an HD-like disorder to unravel complex molecular events that drive disease pathology.

Huntington's disease like-2 (HDL2) is a rare neurodegenerative disorder that is similar to HD. However, HDL2 patients do not have the HD-causing mutation: a repeating CAG sequence in the huntingtin gene that codes for the amino acid glutamine. This mutation results in the production of a chain of glutamines called a polyglutamine (or polyQ) tract within the mutant huntingtin protein. Instead, HDL2 is caused by a CTG/CAG repeat within a region of the Junctophilin-3 (JPH3) gene.

"Both HD and HDL2 brains contain a pathological hallmark called 'intranuclear inclusions' (NIs) that have a similar but not identical distribution pattern in the brain," says senior study author, Dr. X. William Yang, from the Semel Institute at the University of California, Los Angeles. "The NIs in HD contain mutant huntingtin protein, but those in HDL2 do not. Therefore, the pathogenic origins of NIs in HDL2 and the mechanisms underlying HDL2 pathogenesis remain to be uncovered."

To gain new insight into HDL2, Dr. Yang and colleagues at UCLA, and collaborators led by Dr. Russell Margolis at Johns Hopkins University, developed a series of bacterial artificial chromosome (BAC)-mediated transgenic mouse models of HDL2 (BAC-HDL2) that contain an expanded CTG/CAG repeat in the human JPH3 gene, as well as control BAC mice with a nonexpanded CTG/CAG repeat. BACs have been shown to be useful for modeling genetic diseases because they allow introduction of a large piece of human DNA carrying the disease mutation into the mouse genome, thereby permitting the accurate expression of the disease gene similar to that in the patient.

The researchers found that the BAC-HDL2 mice exhibited several key characteristics found in HDL2 patients, including age-dependent motor deficits, selective forebrain atrophy, and brain region-specific distribution of NIs. Molecular analysis revealed that a novel promoter was driving expression of an unexpected section of DNA which encoded a polyQ protein. Importantly, BAC-HDL2, but not control BAC mice, accumulated polyQ-containing NIs in a pattern that was remarkably similar to that seen in HDL2 patients.

The findings point to overlapping polyQ-mediated pathogenic mechanisms in HD and HDL2. "We have generated and characterized the first BAC transgenic mouse models of an HD-like disorder, HDL2," concludes Dr. Yang. "Our analysis suggests that expression of a novel expanded polyQ protein could play a critical role in HDL2 pathogenesis and provides experimental evidence to suggest that HD and HDL2 may have overlapping polyQ-mediated disease mechanisms. Further elucidation of such mechanisms may provide therapeutic targets for both disorders."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian Wilburn, Dobrila D. Rudnicki, Jing Zhao, Tara Murphy Weitz, Yin Cheng, Xiaofeng Gu, Erin Greiner, Chang Sin Park, Nan Wang, Bryce L. Sopher, Albert R. La Spada, Alex Osmand, Russell L. Margolis, Yi E. Sun, X. William Yang. An Antisense CAG Repeat Transcript at JPH3 Locus Mediates Expanded Polyglutamine Protein Toxicity in Huntington's Disease-like 2 Mice. Neuron, 2011; 70 (3): 427-440 DOI: 10.1016/j.neuron.2011.03.021

Cite This Page:

Cell Press. "Novel mouse model provides insight into rare neurodegenerative disease." ScienceDaily. ScienceDaily, 12 May 2011. <www.sciencedaily.com/releases/2011/05/110511131128.htm>.
Cell Press. (2011, May 12). Novel mouse model provides insight into rare neurodegenerative disease. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2011/05/110511131128.htm
Cell Press. "Novel mouse model provides insight into rare neurodegenerative disease." ScienceDaily. www.sciencedaily.com/releases/2011/05/110511131128.htm (accessed August 1, 2014).

Share This




More Mind & Brain News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Work Can Be Stressful, But Is Unemployment Worse?

Work Can Be Stressful, But Is Unemployment Worse?

Newsy (Aug. 1, 2014) A new study shows stress at work can be hard on your health, but people who are unemployed might be at even greater risk of health problems. Video provided by Newsy
Powered by NewsLook.com
Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Newsy (July 31, 2014) Google says it is following Europe's new "Right To Be Forgotten Law," which eliminates user information upon request, but only to a certain degree. Video provided by Newsy
Powered by NewsLook.com
Stroke Signs: Three Hour Deadline

Stroke Signs: Three Hour Deadline

Ivanhoe (July 31, 2014) Sometimes the signs of a stroke are far from easy to recognize. Learn from one young father’s story on the signs of a stroke. Video provided by Ivanhoe
Powered by NewsLook.com
Grain Brain May Be Harming Us

Grain Brain May Be Harming Us

Ivanhoe (July 31, 2014) Could eating carbohydrates be harmful to our brain health? Find out what one neurologist says about changing our diets. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins