Featured Research

from universities, journals, and other organizations

Penguins continue diving long after muscles run out of oxygen

Date:
May 16, 2011
Source:
The Journal of Experimental Biology
Summary:
Emperor penguins routinely dive for tens of minutes before returning to the surface, but about 5.6 minutes into a dive, the birds switch from oxygen-fueled aerobic metabolism to anaerobic metabolism. So what causes this change? Researchers show that emperor penguins' dive muscles trigger the switch to anaerobic metabolism and set the aerobic dive limit when they run out of oxygen.

An Emperor penguin dives into the water.
Credit: Photo by Glenn Grant, National Science Foundation / U.S. Antarctic Program Photo Library

Breathing heavily at the edge of an ice hole, an Antarctic emperor penguin prepares to dive. Taking a last gulp of air, the bird descends and may not emerge again for another 20 minutes. The penguin initially carries sufficient oxygen in three stores -- the blood, lungs and myoglobin in muscle -- to sustain aerobic metabolism. However, around 5.6 minutes after leaving the surface, lactate begins appearing in the penguin's blood and the bird crosses the so-called 'aerobic dive limit', switching to anaerobic metabolism in some tissues. So what triggers this transition?

Writing in The Journal of Experimental Biology, Cassondra Williams from the Scripps Institution of Oceanography explains that the animals were thought to cross the aerobic dive limit when one of their three oxygen stores became exhausted. However, when Paul Ponganis measured oxygen levels in the blood and lungs of penguins after long dives, the animals had oxygen to spare. That only left the muscle as the potential trigger. Williams explains that diving animals were thought to isolate their muscle from the circulatory system, leaving oxygen stored in the tissue as its only source of aerobic metabolism while submerged and forcing it to switch to anaerobic respiration once the supply was exhausted. So, she and Ponganis teamed up with Jessica Meir to travel to Antarctica to measure muscle oxygen levels in diving emperor penguin muscles and they publish their discovery that depleted muscle oxygen supplies trigger the aerobic dive limit.

However, before their departure, Williams had to design a near-infrared spectrophotometer to record the penguins' muscle oxygen stores as they dived in the wild. After two trying years of technical development and testing, Williams was able to travel south with her colleagues to surgically implant the spectrophotometers in the pectoralis muscles of emperor penguins. They also attached time-depth recorders to the animals' backs to track their dive profiles. Finally, the team ensured that the animals would return with their precious equipment by drilling an isolated hole in the sea ice -- to which the penguins were guaranteed to return -- before releasing the implanted animals to go foraging for a day or two.

After successfully retrieving all of the spectrophotometers and dive recorders and returning the penguins to their colony, Williams began analysing the data and found that the penguins had been actively foraging beneath the ice. Of the 50 dives that Williams successfully recorded, 31 exceeded the emperor penguin's calculated dive limit.

Next, Williams plotted the muscle oxygen profiles over the course of each dive and identified two distinct patterns. In the first, the oxygen levels fell continually, approaching zero around the point when the birds crossed the aerobic dive limit. Williams says, 'This profile certainly supports the hypothesis that muscle oxygen depletion is the trigger of the aerobic dive limit.'

However, when the team saw the second pattern, they were surprised that, after initially falling, the oxygen levels plateaued for several minutes before falling again to almost zero. They realised that blood must be flowing into the muscle to replenish the oxygen supply during the middle phase of the dive, delaying the onset of the aerobic dive limit.

Finally, having confirmed that the dive muscles are the source of the aerobic dive limit, Williams calculated the muscle oxygen consumption rate for dives with the first oxygen depletion pattern and was amazed to see that it was only 12.4ml of oxygen per kg of muscle per minute: 1/10th the value calculated for penguins swimming in an artificial flume and only 2-3 times their resting metabolic rate. 'I think this metabolic rate is impressive. You can see how hard they are working underwater but they are efficient swimmers and very hydrodynamic,' says Williams.


Story Source:

The above story is based on materials provided by The Journal of Experimental Biology. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cassondra L. Williams, Jessica U. Meir, Paul J. Ponganis. What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. Journal of Experimental Biology, 2011; 214: 1802-1812 DOI: 10.1242/%u200Bjeb.052233

Cite This Page:

The Journal of Experimental Biology. "Penguins continue diving long after muscles run out of oxygen." ScienceDaily. ScienceDaily, 16 May 2011. <www.sciencedaily.com/releases/2011/05/110512083139.htm>.
The Journal of Experimental Biology. (2011, May 16). Penguins continue diving long after muscles run out of oxygen. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/05/110512083139.htm
The Journal of Experimental Biology. "Penguins continue diving long after muscles run out of oxygen." ScienceDaily. www.sciencedaily.com/releases/2011/05/110512083139.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins