Featured Research

from universities, journals, and other organizations

Molecular technique advances soybean rust resistance research

Date:
May 17, 2011
Source:
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Summary:
A new tool is available to select for soybean rust resistance in breeding populations. Researchers successfully used quantitative polymerase chain reaction (Q-PCR) assays to assess fungal DNA in soybean leaf tissue to quantify the level of resistance in individual plants with resistance to soybean rust.

QPCR allows U of I researchers to evaluate soybean plants more accurately and efficiently to determine the degree of infection. Pictured are three soybean infection types (left) immune response with no visible lesions (complete resistance), (middle) resistant reaction with reddish brown lesions (incomplete resistance), and (right) susceptible reaction with tan lesions after inoculation with Phakopsora pachyrhizi, the cause of soybean rust.
Credit: Glen Hartman, University of Illinois

A new tool is available to select for soybean rust resistance in breeding populations, said Glen Hartman, University of Illinois professor of crop sciences and USDA-ARS scientist. Hartman and his team of researchers successfully used quantitative polymerase chain reaction (Q-PCR) assays to assess fungal DNA in soybean leaf tissue to quantify the level of resistance in individual plants with resistance to soybean rust.

Related Articles


"This is not a new technique," Hartman said. "But it is a new tool for use in soybean rust resistance breeding, which has typically used phenotyping or visual assessment to measure resistance. We discovered that we can perform more precise and quicker assessments using this molecular technique."

Visual assessment is subject to interpretation and is not an exact science, Hartman said. However, Q-PCR allows for exact enumeration of fungal DNA in the tissue. This is particularly helpful when plants show similar visual symptoms, but colonization levels vary based on fungal DNA levels.

"The eye can easily tell us if it's a plus or minus for qualitative resistance, but Q-PCR tells us the quantitative resistance or the gray that lies between the plus and minus," Hartman added.

Often qualitative resistance doesn't last as long as quantitative resistance because it involves a single gene. Pathogens can overcome a single gene more easily, putting soybean breeders right back to where they started with a susceptible reaction, he said.

"In quantitative resistance where multiple genes are working together to form resistance, breeders have to distinguish the gray area between susceptible and resistant," Hartman said. "It takes a lot to do that visually with your eye. You can look at samples under a microscope and take multiple measurements But, it's hard and time consuming, particularly when you are working with breeding populations and hundreds of samples."

Hartman said this technique will be useful for plant breeders trying to breed soybeans for resistance to soybean rust.

"We believe Q-PCR will save time and be more precise," he said. "The precision part is very important. The more precise you can be, knowing exactly what the line is reacting to, will lead to more precise mapping of the quantitative resistance genes."

The mapping of this particular quantitative resistance is very important to breeders selecting for rust resistance, Hartman said.

"It's a numbers game," he said. "In developing soybean cultivars, a large number of lines need to be evaluated so many inferior lines have to be discarded. In terms of breeding for soybean rust resistance, this technique can help determine which lines are more resistant to rust when it comes to the gray areas or quantitative resistance."

This research was published in the April 2011 issue of Plant Disease. Other researchers include Chandra Paul and Curt Hill of the U of I Department of Crop Sciences. This research was supported by the United Soybean Board and the Soybean Diseases Biotechnology Center at the U of I.


Story Source:

The above story is based on materials provided by University of Illinois College of Agricultural, Consumer and Environmental Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Glen Hartman, Chandra Paul, Curt Hill. Comparisons of Visual Rust Assessments and DNA Levels of Phakopsora pachyrhizi in Soybean Genotypes Varying in Rust Resistance. Plant Disease, 2011; 110406074055023 DOI: 10.1094/PDIS-10-10-0729

Cite This Page:

University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Molecular technique advances soybean rust resistance research." ScienceDaily. ScienceDaily, 17 May 2011. <www.sciencedaily.com/releases/2011/05/110516181329.htm>.
University of Illinois College of Agricultural, Consumer and Environmental Sciences. (2011, May 17). Molecular technique advances soybean rust resistance research. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2011/05/110516181329.htm
University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Molecular technique advances soybean rust resistance research." ScienceDaily. www.sciencedaily.com/releases/2011/05/110516181329.htm (accessed October 26, 2014).

Share This



More Plants & Animals News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins