Featured Research

from universities, journals, and other organizations

Researchers create nanopatch for the heart

Date:
May 20, 2011
Source:
Brown University
Summary:
Engineers have a promising new approach to treating heart-attack victims. The researchers created a nanopatch with carbon nanofibers and a polymer. In laboratory tests, natural heart-tissue cell density on the nanoscaffold was six times greater than the control sample, while neuron density had doubled.

Beating heart. Engineers at Brown University have created a nanopatch for the heart that tests show restores areas that have been damaged, such as from a heart attack. Credit: Frank Mullin/Brown University
Credit: Image courtesy of Brown University

Engineers at Brown University and in India have a promising new approach to treating heart-attack victims. The researchers created a nanopatch with carbon nanofibers and a polymer. In laboratory tests, natural heart-tissue cell density on the nanoscaffold was six times greater than the control sample, while neuron density had doubled.

When you suffer a heart attack, a part of your heart dies. Nerve cells in the heart's wall and a special class of cells that spontaneously expand and contract -- keeping the heart beating in perfect synchronicity -- are lost forever. Surgeons can't repair the affected area. It's as if when confronted with a road riddled with potholes, you abandon what's there and build a new road instead.

Needless to say, this is a grossly inefficient way to treat arguably the single most important organ in the human body. The best approach would be to figure out how to resuscitate the deadened area, and in this quest, a group of researchers at Brown University and in India may have an answer.

The scientists turned to nanotechnology. In a lab, they built a scaffold-looking structure consisting of carbon nanofibers and a government-approved polymer. Tests showed the synthetic nanopatch regenerated natural heart tissue cells - called cardiomyocytes -- as well as neurons. In short, the tests showed that a dead region of the heart can be brought back to life.

"This whole idea is to put something where dead tissue is to help regenerate it, so that you eventually have a healthy heart," said David Stout, a graduate student in the School of Engineering at Brown and the lead author of the paper published in Acta Biomaterialia.

The approach, if successful, would help millions of people. In 2009, some 785,000 Americans suffered a new heart attack linked to weakness caused by the scarred cardiac muscle from a previous heart attack, according to the American Heart Association. Just as ominously, a third of women and a fifth of men who have experienced a heart attack will have another one within six years, the researchers added, citing the American Heart Association.

What is unique about the experiments at Brown and at the India Institute of Technology Kanpur is the engineers employed carbon nanofibers, helical-shaped tubes with diameters between 60 and 200 nanometers. The carbon nanofibers work well because they are excellent conductors of electrons, performing the kind of electrical connections the heart relies upon for keeping a steady beat. The researchers stitched the nanofibers together using a poly lactic-co-glycolic acid polymer to form a mesh about 22 millimeters long and 15 microns thick and resembling "a black Band Aid," Stout said. They laid the mesh on a glass substrate to test whether cardiomyocytes would colonize the surface and grow more cells.

In tests with the 200-nanometer-diameter carbon nanofibers seeded with cardiomyocytes, five times as many heart-tissue cells colonized the surface after four hours than with a control sample consisting of the polymer only. After five days, the density of the surface was six times greater than the control sample, the researchers reported. Neuron density had also doubled after four days, they added.

The scaffold works because it is elastic and durable, and can thus expand and contract much like heart tissue, said Thomas Webster, associate professor in engineering and orthopaedics at Brown and the corresponding author on the paper. It's because of these properties and the carbon nanofibers that cardiomyocytes and neurons congregate on the scaffold and spawn new cells, in effect regenerating the area.

The scientists want to tweak the scaffold pattern to better mimic the electrical current of the heart, as well as build an in-vitro model to test how the material reacts to the heart's voltage and beat regime. They also want to make sure the cardiomyocytes that grow on the scaffolds are endowed with the same abilities as other heart-tissue cells.

Bikramjit Basu at the India Institute of Technology Kanpur contributed to the paper. The Indo-U.S. Science and Technology Forum, the Hermann Foundation, the Indian Institute of Technology, Kanpur, the government of India and California State University funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. David A. Stout, Bikramjit Basu, Thomas J. Webster. Poly Lactic-Co-Glycolic Acid: Carbon Nanofiber Composites for Myocardial Tissue Engineering Applications. Acta Biomaterialia, 2011; DOI: 10.1016/j.actbio.2011.04.028

Cite This Page:

Brown University. "Researchers create nanopatch for the heart." ScienceDaily. ScienceDaily, 20 May 2011. <www.sciencedaily.com/releases/2011/05/110519090139.htm>.
Brown University. (2011, May 20). Researchers create nanopatch for the heart. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/05/110519090139.htm
Brown University. "Researchers create nanopatch for the heart." ScienceDaily. www.sciencedaily.com/releases/2011/05/110519090139.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins