Featured Research

from universities, journals, and other organizations

Scientists find odd twist in slow 'earthquakes': Tremor running backwards

Date:
May 24, 2011
Source:
University of Washington
Summary:
Scientists find that in an unfelt, weeks-long seismic phenomenon called episodic tremor and slip, the tremor can suddenly reverse direction and travel back through areas of the fault that it had ruptured in preceding days.

Earthquake scientists trying to unravel the mysteries of an unfelt, weeks-long seismic phenomenon called episodic tremor and slip have discovered a strange twist. The tremor can suddenly reverse direction and travel back through areas of the fault that it had ruptured in preceding days, and do so 20 to 40 times faster than the original fault rupture.

Related Articles


"Regular tremor and slip goes through an area fairly slowly, breaking it. Then once it's broken and weakened an area of the fault, it can propagate back across that area much faster," said Heidi Houston, a University of Washington professor of Earth and space sciences and lead author of a paper documenting the findings, published in Nature Geoscience.

Episodic tremor and slip, also referred to as slow slip, was documented in the Pacific Northwest a decade ago and individual events have been observed in Washington and British Columbia on a regular basis, every 12 to 15 months on average.

Slow-slip events tend to start in the southern Puget Sound region, from the Tacoma area to as far north as Bremerton, and move gradually to the northwest on the Olympic Peninsula, following the interface between the North American and Juan de Fuca tectonic plates toward Vancouver Island in Canada. The events typically last three to four weeks and release as much energy as a magnitude 6.8 earthquake, though they are not felt and cause no damage.

In a normal earthquake a rupture travels along the fault at great speed, producing potentially damaging ground shaking. In episodic tremor and slip, the rupture moves much more slowly along the fault but it maintains a steady pace, Houston said.

"There's not a good understanding yet of why it's so slow, what keeps it from picking up speed and becoming a full earthquake," she said.

Houston and her co-authors -- Brent Delbridge, a UW physics undergraduate; Aaron Wech, a former UW graduate student now at Victoria University of Wellington, New Zealand; and Kenneth Creager, a UW Earth and space sciences professor -- analyzed data collected from tremor events in July 2004, September 2005, January 2007, May 2008 and May 2009 (the 2004 and 2005 events took place only toward the north end of the Olympic Peninsula). The five events provided about 110 days' worth of data representing some 16,000 distinct locations.

The scientists found a distinct signal for clusters of tremor moving rapidly backwards from the leading edge of the tremor, through an area of the fault that had already experienced tremor.

They also noted that rapid tremor reversal appears to happen more readily near the Strait of Juan de Fuca, suggesting that stress from tides could play a role in generating the reversal because the interface appears to be more sensitive just after having been ruptured by the initial tremor event.

Houston noted that episodic tremor and slip occurs at a depth of 22 to 34 miles, where high temperatures have made the tectonic plates more pliable and thus more slippery. At a substantially shallower depth, perhaps 12 miles, the plates are not slippery and so are tightly locked together.

In the locked zone, the tectonic plates can hold the buildup of stress for hundreds of years, rather than just 15 months, but when the interface ruptures it can unleash a great megathrust earthquake such as the one that struck off the coast of Japan in March. Such earthquakes occur in the Cascadia subduction zone every 500 years, on average, and the last one -- estimated at around magnitude 9.0 -- happened in January 1700. Houston noted that the region is within the large time window when another megathrust earthquake could occur.

One key question still to be answered, she said, is what is happening on the plate interface between the locked zone and the depth where tremor occurs. Scientists hope to get a better understanding of the interplay between tremor events and subduction zone earthquakes, including whether the interval between tremor events changes as the end of the 500-year subduction zone earthquake cycle gets nearer.

"Various aspects of the tremor signal may change as the seismic cycle matures," Houston said. "It's also possible that the noise our seismometers detect from tremor events might get louder just before a big earthquake."

The work was funded by a grant from the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Vince Stricherz. Note: Materials may be edited for content and length.


Journal Reference:

  1. Heidi Houston, Brent G. Delbridge, Aaron G. Wech, Kenneth C. Creager. Rapid tremor reversals in Cascadia generated by a weakened plate interface. Nature Geoscience, 2011; DOI: 10.1038/ngeo1157

Cite This Page:

University of Washington. "Scientists find odd twist in slow 'earthquakes': Tremor running backwards." ScienceDaily. ScienceDaily, 24 May 2011. <www.sciencedaily.com/releases/2011/05/110522141545.htm>.
University of Washington. (2011, May 24). Scientists find odd twist in slow 'earthquakes': Tremor running backwards. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/05/110522141545.htm
University of Washington. "Scientists find odd twist in slow 'earthquakes': Tremor running backwards." ScienceDaily. www.sciencedaily.com/releases/2011/05/110522141545.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
NY Gov. on Flood Prep: 'prepared for the Worst'

NY Gov. on Flood Prep: 'prepared for the Worst'

AP (Nov. 23, 2014) First came the big storm. Now comes the big melt for residents of flood-prone areas around Buffalo. New York's governor says officials are preparing for the worst as the temperature is expected to rise and potentially melt several feet of snow. (Nov. 23) Video provided by AP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Raw: Buffalo Residents Digging Out, Helping out

Raw: Buffalo Residents Digging Out, Helping out

AP (Nov. 22, 2014) Hundreds of volunteers joined a 'shovel brigade' in Buffalo, New York on Saturday, as the city was living up to its nickname, "The City of Good Neighbors." Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins