Featured Research

from universities, journals, and other organizations

Scientists detect Earth-equivalent amount of water within the moon

Date:
May 26, 2011
Source:
Brown University
Summary:
The moon has much more water than previously thought, a scientific team has discovered. First-time measurements of lunar melt inclusions show that some parts of the lunar mantle have as much water as the Earth's upper mantle. The results may change the prevailing theory about the Moon's origin as well as shed new light on the origin of water at the lunar poles. Results appear in Science Express.

Scientists at Brown University found super-tiny melt inclusions in lunar soil samples that opened the door for measurements that revealed the magnitude of water inside the moon.
Credit: Saal lab, Brown University

There is water inside the moon -- so much, in fact, that in some places it rivals the amount of water found within Earth.

The finding from a scientific team including Brown University comes from the first-ever measurements of water in lunar melt inclusions. Those measurements show that some parts of the lunar mantle have as much water as Earth's upper mantle.

Lunar melt inclusions are tiny globules of molten rock trapped within crystals that are found in volcanic glass deposits formed during explosive eruptions. The new finding, published this week in Science Express, shows lunar magma water contents 100 times higher than previous studies have suggested.

The result is the culmination of years of investigation by the team searching for water and other volatiles in volcanic glasses returned by NASA Apollo missions in the late 1960s and early 1970s. In a paper in Nature in 2008, the same team led by Alberto Saal, associate professor of geological sciences at Brown, reported the first evidence for the presence of water and used models to estimate how much water was originally in the magmas before eruption.

"The bottom line," said Saal, an author on the Science Express paper and the principal investigator on the research grants, "is that in 2008, we said the primitive water content in the lunar magmas should be similar to the water content in lavas coming from the Earth's depleted upper mantle. Now, we have proven that is indeed the case."

The new finding got a critical assist from a Brown undergraduate student, Thomas Weinreich, who found the melt inclusions that allowed the team to measure the pre-eruption concentration of water in the magma and to estimate the amount of water in the Moon's interior. In a classic needle-in-the-haystack effort, Weinreich searched through thousands of grains from the famous high-titanium "orange soil" discovered by astronaut Harrison Schmitt during the Apollo 17 mission before finding ten that included melt inclusions.

"It just looks like a clear sample with some black specks in it," said Weinreich, the second author on the paper.

Compared with meteorites, Earth and the other inner planets of our solar system contain relatively low amounts of water and volatile elements, which were not abundant in the inner solar system during planet formation. The even lower quantities of these volatile elements found on the Moon has long been claimed as evidence that it must have formed following a high-temperature, catastrophic giant impact. But this new research shows that aspects of this theory must be reevaluated.

"Water plays a critical role in determining the tectonic behavior of planetary surfaces, the melting point of planetary interiors and the location and eruptive style of planetary volcanoes," said Erik Hauri, a geochemist with the Carnegie Institution of Washington and lead author of the study. "We can conceive of no sample type that would be more important to return to Earth than these volcanic glass samples ejected by explosive volcanism, which have been mapped not only on the moon but throughout the inner solar system."

The research team measured the water content in the inclusions using a state-of-the-art NanoSIMS 50L ion microprobe.

"In contrast to most volcanic deposits, the melt inclusions are encased in crystals that prevent the escape of water and other volatiles during eruption. These samples provide the best window we have on the amount of water in the interior of the Moon," said James Van Orman of Case Western Reserve University, a member of the science team.

The study also puts a new twist on the origin of water ice detected in craters at the lunar poles by several recent NASA missions. The ice has been attributed to comet and meteor impacts, but it is possible some of this ice could have come from the water released by eruption of lunar magmas.

Malcolm Rutherford, professor emeritus in geological sciences at Brown, also contributed to the paper. The NASA LASER and Cosmochemistry programs funded the research, with additional support provided by the NASA Lunar Science Institute (NLSI) and the NASA Astrobiology Institute.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erik H. Hauri, Thomas Weinreich, Alberto E. Saal, Malcolm C. Rutherford, James A. Van Orman. High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions. Science, 2011; DOI: 10.1126/science.1204626

Cite This Page:

Brown University. "Scientists detect Earth-equivalent amount of water within the moon." ScienceDaily. ScienceDaily, 26 May 2011. <www.sciencedaily.com/releases/2011/05/110526141400.htm>.
Brown University. (2011, May 26). Scientists detect Earth-equivalent amount of water within the moon. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/05/110526141400.htm
Brown University. "Scientists detect Earth-equivalent amount of water within the moon." ScienceDaily. www.sciencedaily.com/releases/2011/05/110526141400.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins